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Abstract 
Numerous architectures have been recently proposed 

for residue arithmetic components, each with its own 
speed, area and power consumption characteristics. In 
this paper, we present KoVer, a novel software tool that 
gives a designer the opportunity to explore several archi-
tectures for implementing his residue arithmetic blocks, 
select the one that best suits his goals and instantly get the 
HDL level description of the selected architecture.  

1.  Introduction 
Pre-verified cores, available in technology independent 

descriptions such as in hardware description languages 
(HDLs) reduce time-to-market by providing a vehicle for 
faster design cycles. Since arithmetic components are one 
of the most commonly used design blocks, several arithme-
tic core generators have been presented during the last 
years. Most of these generators however only attack the 
problem of producing cores for the weighted binary / 2’s 
complement / IEEE 754 floating point representations. 

On the other hand, arithmetic modulo d, where d is a 
positive integer, has found great applicability in digital 
computing systems. Its areas of application include the 
implementation of residue, inverse residue, product and 
checksum arithmetic codes which are used extensively in 
TCP/IP network error detection and in traffic monitoring 
and statistics gathering in high-speed networks, in pseudo-
random number generation by hardware, in the implemen-
tation of cryptographic algorithms that use modulo multi-
plications and exponentiations and in the Fermat number 
transform, which is used to compute convolutions without 
round off errors. 

Furthermore, non-positional Residue Number Systems 
(RNS) that make parallel use of arithmetic modulo d com-
ponents, have been proposed as an attractive alternative to 
the binary system for applications whose arithmetic opera-
tions are limited to addition, subtraction, multiplication 
and squaring [1]. In particular, the scientific community 

has shown great interest for d of the 2n
±1 forms. Apart 

from their use in TCP/IP networking hardware and Fermat 
number transform, these moduli have been extensively 
used in RNSs that exploit the commonly used three moduli 
set {2n, 2n-1, 2n+1}. Therefore, a great number of distinct 
very fast architectures have been proposed for arithmetic 
components modulo 2n

±1.

In this paper , we present ΚοVer, a core generator that 
attacks the problem of producing reusable and pre-verified 
residue arithmetic cores. KoVer integrates a significant 
number of different architectures proposed for modulo 
2n
±1 arithmetic components. In the case of the 2n+1 archi-

tectures, components that either use the weighted or the 
diminished-1 number system [2] have been considered.  

By integrating a variety of architectures, ΚοVer pro-
vides the designer with the ability to perform an architec-
tural exploration of the possible solutions and choose the 
one that best suits his area, time and power consumption 
goals. ΚοVer produces structural HDL descriptions of the 
chosen cores, along with a testbench comprised of random 
simulation vectors for the generated cores. Since no en-
cryption is performed on the output, the designer can easily 
further customize the produced HDL code and straightfor-
wardly integrate it with the rest of his design. 

Since the number of architectures proposed for modulo 
2n
±1 components is constantly rising, an open software 

architecture was a prerequisite for designing KoVer. 
Therefore KoVer’s design follows a completely modular 
architetcure and gives a user the ability of adding com-
pletely new architectures or extending any of the  existing 
ones in a straightforward manner.  

2. Supported Architectures & Features 
Considering that the main applications of residue arith-

metic target performance enhancement, we chose to inte-
grate into  KoVer only the fastest known architectures of 
each generated arithmetic core and their derivatives. 

For modulo 2n-1 adders KoVer supports the architec-
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tures proposed in [3-7], along with a proprietary architec-
ture. Adders that support either both or only a single repre-
sentation for the zero operand can be generated. The ad-
ders of [7] are based on a CLA carry computation unit and 
offer an execution time similar to the integer CLA adders. 
All the rest architectures are either very fast parallel-prefix 
ones or hybrid ones , that is, they use both parallel-prefix 
blocks and CLA parts between them [4]. The totally paral-
lel-prefix architecture of [3] is only applicable to n-bit ad-
ders with n of the 2k form. On the other hand, when n≠2k,
several simplifications can be applied to the parallel-prefix 
structure as proposed in [5, 6].  

For modulo 2n+1 adders KoVer supports both weighted 
and diminished-1 representation of operands. In the last 
case, the user can further select whether the handling of 
zero operands will be done by another block or within the 
adder description produced by KoVer, as proposed in [8]. 
In the case of weighted representations, KoVer provides 
support for both architectures proposed in [9]. For dimin-
ished-one operands KoVer supports the totally parallel-
prefix architecture proposed in [10], which is only appli-
cable to n-bit adders with n of the 2k form, the hybrid ar-
chitecture proposed in [4] and a proprietary one. 

In the case of modulo 2n-1 multipliers, KoVer provides 
support for both array [11] and modified Booth [12] multi-
pliers. The last adder of the multiplier can be further se-
lected from the supported architectures. KoVer also sup-
ports three different baseline architectures for modulo 2n+1
multiplication. For weighted representations the array ar-
chitecture proposed in [13] can be selected along with any 
of the two weighted adder architectures as the last stage 
adder. In the case of diminished-1 operands, either an ar-
ray [14] or a modified-Booth architecture [15] can be fol-
lowed.  The last stage adder can be selected among the  
offered architectures of diminished-1 adders.  

Finally, KoVer supports modulo 2n-1 [16] and weighted 
/ diminished-1 modulo 2n+1 squarers [17] as well as sev-
eral different proprietary architectures for combined multi-
plication / sum-of-squares units.  

Table 1 summarizes the number of baseline architec-
tures supported for each type of arithmetic components as 
well as the number of variant architectures that can be con-
structed according to the user preferences. As we can see, 
the number of different cores that ΚοVer can generate is 
very large and gives the designer the opportunity for archi-
tectural exploration of the best solution. On the other hand, 
architectural exploration requires a significant amount of 
time. To this end, KoVer includes some sophisticated fea-
tures that can be of significant help to the designer.  

We have currently implemented the following two so-
phisticated features :  

♦ Past results knowledge and 

Table 1. Different architectures supported 

Component type # of Baseline 
Architectures

# of Variants 

2n-1 adders 6 12 
2n+1 adders 5 8 

2n-1 multipliers 2 24 

2n+1 multipliers 3 16 

2n-1 squarers 1 12 

2n+1 squarers 2 10 

Combined multiplica-
tion / sum of squares 

units 

3 40 

♦ Automated RNS  datapath construction.

The past results knowledge refers to the incorporation 
into KoVer’s database of implementation area, execution 
delay and power consumption measurements. These meas-
urements were gathered by analysis and simulation of  lay-
out extracted data for each of the supported variants, utiliz-
ing two distinct implementation technologies. These meas-
urements are readily available to the user and are further 
used in KoVer’s database for classifying the possible vari-
ants. As a result the end user may only choose to select a 
category instead of a specific architecture and therefore the 
required exploration is narrowed significantly. For exam-
ple, once the user asks the tool for the fastest modulo 2n-1 
adder with a single representation of zero, taking into ac-
count the past knowledge, the tool will limit the architec-
tural exploration to the architecture of [3] if n=2k, or to the 
architectures of [5,6] instead. 

The automated RNS  datapath construction is an inte-
grated environment for a user that wants the minimum in-
teraction with the tool and the less integration effort. The 
user first needs to specify the arithmetic components of his 
target RNS datapath and then the required precision of his 
application, for example 64 bits. KoVer will then provide a 
set of alternative RNS moduli sets comprised of up to five 
moduli that can offer the required precision. In our exam-
ple the moduli sets {222, 222-1, 222+1} and {217, 217-1, 
217+1, 213-1} are two of the possibilities considered by 
KoVer. Based on the past results knowledge, KoVer cate-
gorizes these possibilities in terms of area, delay and 
power consumption.  

3. Comparison results 
In this section, we compare KoVer against a commer-

cial core generator, using as test vehicles a few residue 
arithmetic cores.  

All the required HDL descriptions were produced by 
KoVer in less than 2 seconds of run time in a Pentium 4 
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personal computer. After extensive simulation of the HDL 
codes, the designs were synthesized in a 0.25µm static 
CMOS technology with the restriction of a maximum fan-
out of 4 and optimized following a standard optimization 
script. The synthesized netlists along with the design con-
straints to achieve them were then used for placing and 
routing the designs. All design constraints, such as output 
load, floorplan initialization information and pin placement 
were held constant for each architecture. Final timing 
analysis was performed after all RC parasitic information 
was extracted from the layout and back-annotated to the 
gate-level netlist. Typical voltage and temperature operat-
ing conditions are assumed along with average gate delays. 

The results obtained are indicated in Table 2. As we can 
see, the cores produced by ΚοVer outperform the ones of 
the commercial generator in both the required implementa-
tion area as well as the execution latency. The savings ob-
served are in the average of the examined cases 30.4% 
with respect to the implementation area and 17.5% with 
respect to the execution delay. If we restrict our observa-
tions only to modulo multipliers, which is considered an 
even more specific module than a modulo adder, we can 
see that the savings offered by KoVer’s components raise 
to 35.5% and 21.3% in implementation area and execution 
delay respectively. 

Table 2 : Comparison results 

ΚοVer generated cores Cores produced by commercial generator 

Component Architecture
followed 

Area (µm2) Delay (ns) Area (µm2) Delay (ns) 

216-1 adder [26] 23012.7 1.24 31875.1 1.63 
216+1 adder [32] 26765.3 1.28 34667.0 1.67 

28-1 multiplier [35] 33891.3 3.06 51982.9 3.88 

28+1 multiplier [37] 35641.3 3.09 55873.2 3.93 

4.  Conclusions 
In this paper, we have presented ΚοVer, a new core 

generator for residue arithmetic components. KoVer can 
produce a large number of distinct very fast architectures 
for each considered residue arithmetic component and 
many variants of each, enabling a designer to find the one 
that best suits his needs by architectural exploration. The 
sophisticated features embedded in KoVer can further help 
the designer narrow his search space. The generated cores 
are offered in synthesizable HDL, enabling further cus-
tomization by the user. KoVer follows an open software 
architecture, that allows straightforward upgrades with new 
design templates and features. 
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