

KoVer : A Sophisticated Residue Arithmetic Core Generator

Nikolaos Kostaras1 and H. T. Vergos1,2

1Dept. of Computer Engineering & Informatics, University of Patras, 26 500 Rio, Greece
2Computer Technology Institute 3 Kolokotroni St., 26 221 Patras, Greece

E-mail : {kostaran,vergos}@ceid.upatras.gr

Abstract
Numerous architectures have been recently proposed

for residue arithmetic components, each with its own
speed, area and power consumption characteristics. In
this paper, we present KoVer, a novel software tool that
gives a designer the opportunity to explore several archi-
tectures for implementing his residue arithmetic blocks,
select the one that best suits his goals and instantly get the
HDL level description of the selected architecture.

1. Introduction
Pre-verified cores, available in technology independent

descriptions such as in hardware description languages
(HDLs) reduce time-to-market by providing a vehicle for
faster design cycles. Since arithmetic components are one
of the most commonly used design blocks, several arithme-
tic core generators have been presented during the last
years. Most of these generators however only attack the
problem of producing cores for the weighted binary / 2’s
complement / IEEE 754 floating point representations.

On the other hand, arithmetic modulo d, where d is a
positive integer, has found great applicability in digital
computing systems. Its areas of application include the
implementation of residue, inverse residue, product and
checksum arithmetic codes which are used extensively in
TCP/IP network error detection and in traffic monitoring
and statistics gathering in high-speed networks, in pseudo-
random number generation by hardware, in the implemen-
tation of cryptographic algorithms that use modulo multi-
plications and exponentiations and in the Fermat number
transform, which is used to compute convolutions without
round off errors.

Furthermore, non-positional Residue Number Systems
(RNS) that make parallel use of arithmetic modulo d com-
ponents, have been proposed as an attractive alternative to
the binary system for applications whose arithmetic opera-
tions are limited to addition, subtraction, multiplication
and squaring [1]. In particular, the scientific community

has shown great interest for d of the 2n
±1 forms. Apart

from their use in TCP/IP networking hardware and Fermat
number transform, these moduli have been extensively
used in RNSs that exploit the commonly used three moduli
set {2n, 2n-1, 2n+1}. Therefore, a great number of distinct
very fast architectures have been proposed for arithmetic
components modulo 2n

±1.

In this paper , we present ΚοVer, a core generator that
attacks the problem of producing reusable and pre-verified
residue arithmetic cores. KoVer integrates a significant
number of different architectures proposed for modulo
2n
±1 arithmetic components. In the case of the 2n+1 archi-

tectures, components that either use the weighted or the
diminished-1 number system [2] have been considered.

By integrating a variety of architectures, ΚοVer pro-
vides the designer with the ability to perform an architec-
tural exploration of the possible solutions and choose the
one that best suits his area, time and power consumption
goals. ΚοVer produces structural HDL descriptions of the
chosen cores, along with a testbench comprised of random
simulation vectors for the generated cores. Since no en-
cryption is performed on the output, the designer can easily
further customize the produced HDL code and straightfor-
wardly integrate it with the rest of his design.

Since the number of architectures proposed for modulo
2n
±1 components is constantly rising, an open software

architecture was a prerequisite for designing KoVer.
Therefore KoVer’s design follows a completely modular
architetcure and gives a user the ability of adding com-
pletely new architectures or extending any of the existing
ones in a straightforward manner.

2. Supported Architectures & Features
Considering that the main applications of residue arith-

metic target performance enhancement, we chose to inte-
grate into KoVer only the fastest known architectures of
each generated arithmetic core and their derivatives.

For modulo 2n-1 adders KoVer supports the architec-

Proceedings of the 16th International Workshop on Rapid System Prototyping (RSP’05)

1074-6005/05 $20.00 © 2005 IEEE

tures proposed in [3-7], along with a proprietary architec-
ture. Adders that support either both or only a single repre-
sentation for the zero operand can be generated. The ad-
ders of [7] are based on a CLA carry computation unit and
offer an execution time similar to the integer CLA adders.
All the rest architectures are either very fast parallel-prefix
ones or hybrid ones , that is, they use both parallel-prefix
blocks and CLA parts between them [4]. The totally paral-
lel-prefix architecture of [3] is only applicable to n-bit ad-
ders with n of the 2k form. On the other hand, when n≠2k,
several simplifications can be applied to the parallel-prefix
structure as proposed in [5, 6].

For modulo 2n+1 adders KoVer supports both weighted
and diminished-1 representation of operands. In the last
case, the user can further select whether the handling of
zero operands will be done by another block or within the
adder description produced by KoVer, as proposed in [8].
In the case of weighted representations, KoVer provides
support for both architectures proposed in [9]. For dimin-
ished-one operands KoVer supports the totally parallel-
prefix architecture proposed in [10], which is only appli-
cable to n-bit adders with n of the 2k form, the hybrid ar-
chitecture proposed in [4] and a proprietary one.

In the case of modulo 2n-1 multipliers, KoVer provides
support for both array [11] and modified Booth [12] multi-
pliers. The last adder of the multiplier can be further se-
lected from the supported architectures. KoVer also sup-
ports three different baseline architectures for modulo 2n+1
multiplication. For weighted representations the array ar-
chitecture proposed in [13] can be selected along with any
of the two weighted adder architectures as the last stage
adder. In the case of diminished-1 operands, either an ar-
ray [14] or a modified-Booth architecture [15] can be fol-
lowed. The last stage adder can be selected among the
offered architectures of diminished-1 adders.

Finally, KoVer supports modulo 2n-1 [16] and weighted
/ diminished-1 modulo 2n+1 squarers [17] as well as sev-
eral different proprietary architectures for combined multi-
plication / sum-of-squares units.

Table 1 summarizes the number of baseline architec-
tures supported for each type of arithmetic components as
well as the number of variant architectures that can be con-
structed according to the user preferences. As we can see,
the number of different cores that ΚοVer can generate is
very large and gives the designer the opportunity for archi-
tectural exploration of the best solution. On the other hand,
architectural exploration requires a significant amount of
time. To this end, KoVer includes some sophisticated fea-
tures that can be of significant help to the designer.

We have currently implemented the following two so-
phisticated features :

♦ Past results knowledge and

Table 1. Different architectures supported

Component type # of Baseline
Architectures

of Variants

2n-1 adders 6 12
2n+1 adders 5 8

2n-1 multipliers 2 24

2n+1 multipliers 3 16

2n-1 squarers 1 12

2n+1 squarers 2 10

Combined multiplica-
tion / sum of squares

units

3 40

♦ Automated RNS datapath construction.

The past results knowledge refers to the incorporation
into KoVer’s database of implementation area, execution
delay and power consumption measurements. These meas-
urements were gathered by analysis and simulation of lay-
out extracted data for each of the supported variants, utiliz-
ing two distinct implementation technologies. These meas-
urements are readily available to the user and are further
used in KoVer’s database for classifying the possible vari-
ants. As a result the end user may only choose to select a
category instead of a specific architecture and therefore the
required exploration is narrowed significantly. For exam-
ple, once the user asks the tool for the fastest modulo 2n-1
adder with a single representation of zero, taking into ac-
count the past knowledge, the tool will limit the architec-
tural exploration to the architecture of [3] if n=2k, or to the
architectures of [5,6] instead.

The automated RNS datapath construction is an inte-
grated environment for a user that wants the minimum in-
teraction with the tool and the less integration effort. The
user first needs to specify the arithmetic components of his
target RNS datapath and then the required precision of his
application, for example 64 bits. KoVer will then provide a
set of alternative RNS moduli sets comprised of up to five
moduli that can offer the required precision. In our exam-
ple the moduli sets {222, 222-1, 222+1} and {217, 217-1,
217+1, 213-1} are two of the possibilities considered by
KoVer. Based on the past results knowledge, KoVer cate-
gorizes these possibilities in terms of area, delay and
power consumption.

3. Comparison results
In this section, we compare KoVer against a commer-

cial core generator, using as test vehicles a few residue
arithmetic cores.

All the required HDL descriptions were produced by
KoVer in less than 2 seconds of run time in a Pentium 4

Proceedings of the 16th International Workshop on Rapid System Prototyping (RSP’05)

1074-6005/05 $20.00 © 2005 IEEE

personal computer. After extensive simulation of the HDL
codes, the designs were synthesized in a 0.25µm static
CMOS technology with the restriction of a maximum fan-
out of 4 and optimized following a standard optimization
script. The synthesized netlists along with the design con-
straints to achieve them were then used for placing and
routing the designs. All design constraints, such as output
load, floorplan initialization information and pin placement
were held constant for each architecture. Final timing
analysis was performed after all RC parasitic information
was extracted from the layout and back-annotated to the
gate-level netlist. Typical voltage and temperature operat-
ing conditions are assumed along with average gate delays.

The results obtained are indicated in Table 2. As we can
see, the cores produced by ΚοVer outperform the ones of
the commercial generator in both the required implementa-
tion area as well as the execution latency. The savings ob-
served are in the average of the examined cases 30.4%
with respect to the implementation area and 17.5% with
respect to the execution delay. If we restrict our observa-
tions only to modulo multipliers, which is considered an
even more specific module than a modulo adder, we can
see that the savings offered by KoVer’s components raise
to 35.5% and 21.3% in implementation area and execution
delay respectively.

Table 2 : Comparison results

ΚοVer generated cores Cores produced by commercial generator

Component Architecture
followed

Area (µm2) Delay (ns) Area (µm2) Delay (ns)

216-1 adder [26] 23012.7 1.24 31875.1 1.63
216+1 adder [32] 26765.3 1.28 34667.0 1.67

28-1 multiplier [35] 33891.3 3.06 51982.9 3.88

28+1 multiplier [37] 35641.3 3.09 55873.2 3.93

4. Conclusions
In this paper, we have presented ΚοVer, a new core

generator for residue arithmetic components. KoVer can
produce a large number of distinct very fast architectures
for each considered residue arithmetic component and
many variants of each, enabling a designer to find the one
that best suits his needs by architectural exploration. The
sophisticated features embedded in KoVer can further help
the designer narrow his search space. The generated cores
are offered in synthesizable HDL, enabling further cus-
tomization by the user. KoVer follows an open software
architecture, that allows straightforward upgrades with new
design templates and features.

5. References
[1] N. Szabo and R. Tanaka, Residue Arithmetic and its

Aplications to Computer Technology, McGraw-Hill, 1967.
[2] L. M. Leibowitz, "A simplified binary arithmetic for the

Fermat number transform", IEEE Trans. Acoust. Speech,
Signal Processing, 1976, pp. 356-359.

[3] L. Kalampoukas et al., "High-Speed Parallel-Prefix Modulo
2n-1 Adders", IEEE Trans. on Computers, July 2000, pp.
673-680.

[4] C. Efstathiou et al., "Modulo 2n±1 Adder Design Using
Select-Prefix Blocks", IEEE Trans. on Computers,
November 2003, pp. 1399-1406.

[5] G. Dimitrakopoulos et al., "A Systematic Methodology for
Designing Area-Time Efficient Parallel-Prefix Modulo 2n-1
Adders", Proc. of ISCAS 2003, pp. 225-228.

[6] G. Dimitrakopoulos et al., "A family of Parallel-Prefix
Modulo 2n-1 Adders", Proc. of ASAP 2003, pp. 326-336.

[7] C. Efstathiou et al., "Area–Time Efficient Modulo 2n-1
Adder Design", IEEE Trans. on Circuits and Systems–II,
1994, pp. 463–467.

[8] C. Efstathiou, et. al, "Handling Zero in Diminished-One
Modulo 2n+1 Adders", Int. J. of Electronics, Feb. 2003, pp.
133-144.

[9] C. Efstathiou et al., "Fast Parallel-Prefix Modulo 2n+1
Adders", IEEE Trans. on Computers, Sep. 2004, pp. 1211-
1216.

[10] H. T. Vergos et al., "Diminished-One Modulo 2n+1 Adder
Design", IEEE Trans. on Computers, Dec. 2002, pp. 1389-
1399.

[11] Z. Wang et al., "An algorithm for multiplication modulo
(2N-1)", Proc. of the 39th Midwest Symp. on Circuits and
Systems, 1997, pp. 1301-1304.

[12] C. Efstathiou et al., "Modified Booth Modulo 2n-1
Multipliers", IEEE Trans. on Computers, March 2004, pp.
370-374.

[13] A. Wrzyszcz and D. Milford, "A New Modulo 2a + 1
Multiplier", Proc. of ICCD 1993, pp. 614–617.

[14] C. Efstathiou et al., "Efficient Diminished-1 Modulo 2n+1
Multipliers", IEEE Trans. on Computers, April 2005, pp.
491 – 496.

[15] Y. Ma, "A Simplified Architecture for Modulo (2n+1)
Multiplication", IEEE Trans. on Computers, March 1998,
pp. 333-337.

[16] S. J. Piestrak, "Design of squarers modulo A with low-level
pipelining", IEEE Trans. on Computers, 2002, pp. 31–41.

[17] H. T. Vergos and C. Efstathiou, "Diminished-1 Modulo
2n+1 Squarer Design", Proc. of DSD 2004, pp. 380-386.

Proceedings of the 16th International Workshop on Rapid System Prototyping (RSP’05)

1074-6005/05 $20.00 © 2005 IEEE

	WS_5_eksofillo
	Doc1
	W_05

