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Abstract Novel architectures for designing modulo 2n + 1 subtractors and com-
bined adders/subtractors are proposed in this manuscript. Both the normal and the
diminished-one representations of the operands are considered. Unit gate estimates
and CMOS VLSI implementations reveal that the proposed modulo 2n + 1 subtrac-
tors for operands in the normal representation are more efficient than those previously
proposed. The proposed diminished-one modulo 2n+1 subtractors have a complexity
similar to that of the corresponding diminished-one adders. Modulo 2n − 1 subtrac-
tors and adders/subtractors are also considered for the sake of completeness and a
comparison between alternative architectures is provided.

Keywords Residue number system · Modulo 2n ± 1 arithmetic circuits ·
Subtraction · Addition · Normal and diminished-one modulo 2n + 1 number
representations

1 Introduction

The Residue Number System (RNS) is a non-weighted, carry-free number system
[2, 25], well-suited to applications in which the operations are limited to addition,
subtraction, multiplication and squaring.
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In an RNS, an operand is represented by its residues over a moduli set. Every
arithmetic operation is carried out in parallel units each performing a computation
on narrow residues instead of the wide operand. In this way, significant speedup over
a traditional system that follows the binary representation may be achieved. As a
consequence, the RNS has been considered for the design of communication compo-
nents [17, 22, 24, 26], cryptographic circuits [3], digital signal processors and recon-
figurable datapaths [8, 9, 29], DCT processors [13], FIR filters [7, 21, 28] and image
processing units [23, 33].

Almost all RNSs use some modulus of the 2n ±1 form, mainly due to the existence
of efficient architectures for the required conversions from/to the RNS/binary system
and for performing the arithmetic operations in modulo 2n ± 1 arithmetic.

The complexity of a modulo 2n + 1 arithmetic unit is determined by the repre-
sentation chosen for the input operands. Several representations have therefore been
considered: the normal weighted one, the diminished-one [19], the signed-LSB [15]
and the SUT [32] representations are such examples. In the following, we consider
the first two representations, since they are the most widely adopted. The normal rep-
resentation uses the operands binary value. Therefore, it has the disadvantage that
it requires (n + 1) bits while it uses only the 2n + 1 combinations of them. In the
diminished-one representation, each operand is represented by a value which is de-
creased by one compared to the value of its normal representation. As a result, only
n bits are used in the computation units, leading to more efficient modulo 2n + 1
arithmetic circuits. However, zero operands and results have to be treated separately.
Several architectures for modulo 2n + 1 arithmetic circuits have been recently pre-
sented for both representations [1, 4, 10, 12, 15, 20, 30–32, 35–37, 39].

Operands in modulo 2n − 1 arithmetic require n bits in order to be represented,
thus the modulo 2n − 1 channel can be implemented to be as efficient as the modulo
2n (conventional arithmetic) channel [1, 4–6, 11, 15, 16, 32, 39].

Subtraction is an operation very frequently met in a variety of applications. Exam-
ples in digital signal processing (DSP) include linear-phase FIR filters with antisym-
metric impulse responses, such as digital Hilbert transformers and differentiators,
reduced-complexity complementary and parallel FIR structures, and adaptive DSP
algorithms, such as channel equalizers and echo cancellers [27, 38]. However, little
work has been presented on the design of modulo 2n ± 1 subtractors [5, 31, 32].

Since the majority of DSP algorithms require a significant number of addition and
subtraction operations, two solutions are possible for implementing these algorithms
over an RNS. They are, either to include both adder and subtractor circuits, or to
include a single unit capable of performing either addition or subtraction depending
on a mode signal. The first solution almost doubles the required hardware, whereas
the second one does not allow additions and subtractions to be executed in paral-
lel. Application examples include digital signal processors [9, 29] and reconfigurable
datapaths [6, 8].

In this paper we deal with the problem of designing efficient modulo 2n + 1 sub-
tractors and combined adders/subtractors in a unified way. We consider both the cases
of normal and diminished-one operands’ representation. We also consider, although
straightforward, the design of modulo 2n − 1 subtractors and adders/subtractors just
for the sake of completeness. Finally, we evaluate and compare the presented archi-
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tectures against previous proposals and present area, delay and average power results
based on both a unit gate model and CMOS VLSI implementations.

The rest of the paper is organized as follows. In the next section, novel architec-
tures for designing modulo 2n + 1 subtractors and adders/subtractors are presented.
In Sect. 3, we comment on designing modulo 2n − 1 subtractors and combined
adders/subtractors. Evaluations and comparisons are given in Sect. 4. Finally, con-
clusions are drawn in the last section.

2 Modulo 2n + 1 Subtractors and Adders/Subtractors

In this section we present novel architectures for designing modulo 2n+1 subtractors,
as well as modulo 2n +1 adders/subtractors. The first two and the last two subsections
consider that the operands follow the normal and the diminished-one representation,
respectively.

2.1 Modulo 2n + 1 Subtractors for the Normal Representation

Let A = an · · ·a0 and B = bn · · ·b0 denote two (n + 1)-bit operands that follow the
normal representation, with 0 ≤ A,B < 2n + 1. Let also |x|m denote the residue of
a k-bit operand x, when divided by m. The difference, D, of A and B taken modulo
2n + 1 can be computed as follows:

D = |A − B|2n+1 = ∣
∣A + 2

(

2n + 1
) − B

∣
∣
2n+1

= ∣
∣A + (

2n+1 − 1
) − B + 3

∣
∣
2n+1 = ∣

∣A + B̄ + 3
∣
∣
2n+1 (1)

where B̄ denotes the one’s complement of B . Relation (1) indicates that the modulo
2n +1 difference of A and B is equivalent to the sum of A and B taken modulo 2n +1
as long as a correction term equal to 3 is also taken into account.

It has recently been shown [37] that the modulo 2n + 1 sum of two (n + 1)-bit
operands X and Y in the normal representation can be carried out by an inverted
end-around carry (IEAC) n-bit parallel adder, augmented by an inverted end-around-
carry carry save adder (IEAC CSA). Specifically, the n least significant bits of X

and Y,Xn−1:0 and Yn−1:0, along with an n-bit correction term, C, that depends
on the values of the most significant bits of X and Y , xn and yn, are added by
an IEAC CSA which consists of n full adders (FAs) and an inverter. It holds that
C = 1 · · ·1(xn ∧ yn)(xn ⊕ yn), where ∧ denotes the logical AND and ⊕ denotes the
logical exclusive-OR. The two n-bit outputs of the carry save adder are then driven to
the IEAC adder that produces the n least significant bits of the result. The most sig-
nificant bit of the result is derived by detecting whether the two inputs of the IEAC
adder are complementary or not. According to [37], the area overhead for computing
the most significant bit of the result is negligible and the delay overhead is zero.

We can use the normal modulo 2n + 1 addition architecture of [37] for the normal
modulo 2n + 1 subtraction as well, using as inputs the operands A and B of (1).
Furthermore, the constant value of 3 in (1) can be merged with the correction term C.
This leads to a new correction term C′ that is (n+1)-bit wide and its value is equal to
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Fig. 1 Modulo 2n + 1 subtractor for operands in the normal representation

(an ∧ b̄n)0 . . .0(ān ∧bn). When the correction term C′ is equal to 2n = |−1|2n+1, the
carry save addition is not required [37] and the inputs of the IEAC adder should be
driven directly by the n least significant bits of A and B̄ . This is justified by the fact
that an IEAC CSA produces at the output the sum of its input operands increased by
one. Hence, an IEAC CSA addition of A,B , and −1 results in A + B + (−1) + 1 =
A + B and can be avoided.

According to the above, the architecture presented in Fig. 1 is derived for a modulo
2n + 1 subtractor. Two n-bit 2-to-1 multiplexers with a common select signal equal
to (an ∧ b̄n) are used between the IEAC CSA and the IEAC adder.

Considering that, in modulo 2n + 1 arithmetic, an(bn) and ai(bi), 0 ≤ i < n, can-
not be simultaneously at 1, several simplifications can be applied to the modulo sub-
tractor circuit of Fig. 1:

• The (n − 1) leftmost FAs of the IEAC CSA can be simplified to half adders (HAs)
since C′ consists of (n−1) zeros. Furthermore, the sum outputs ai ⊕bi , 0 < i < n,
of those HAs can be directly driven to the corresponding inputs of the IEAC adder,
bypassing the multiplexer that is shown on the right. When an ∧ b̄n = 0, then the
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Fig. 2 Proposed modulo 2n + 1 subtractor for operands following the normal representation

required values, that is ai ⊕ bi , are obviously driven to the IEAC adder. If, on the
other hand, an ∧ b̄n = 1, then an = 1 and ai = 0, 0 ≤ i < n, and the required values
are also driven to the diminished-one adder since ai ⊕ bi = 0 ⊕ bi = bi .

• The right input of the left multiplexer of Fig. 1, instead of the an−1 · · ·a0, can be
driven by the 0 · · ·0 value due to the fact that this input of the multiplexer is selected
when an = 1. Hence, the leftmost multiplexer can be replaced by n 2-input AND
logic gates and an inverter.

• The rightmost FA along with the 2-input NOR logic gate and the corresponding
1-bit 2-to-1 multiplexers can also be simplified since an(bn) and a0(b0) cannot be
simultaneously at 1. The logic equations of the outputs of this simplified part of the
circuit are: s = (a0 ⊕ (b0 ∨ bn)) ∨ (an ∧ b0) and c = (a0 ∧ b0) ∨ (an ∧ bn), where
∨ denotes the logical OR function.

The simplified circuit that is finally derived for the modulo 2n + 1 subtractor is
given in Fig. 2.

Example 1 Let us consider, as an example, a value of n equal to 8 and that
A = 8510 = 0010101012 and B = 1210 = 0000011002. Then D = |A − B|257 =
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|85 − 12|257 = 7310. According to (1) it holds that D = |A + B + 3|257 = |85 +
499 + 3|257 = |587|257 = 7310. Let An−1:0 = 010101012, B̄n−1:0 = 111100112 and
C′

n−1:0 = 000000002 denote the three inputs of the IEAC CSA. The 8-bit sum and
carry outputs are then equal to 101001102 = 16610 and 101000112 = 16310, respec-
tively. Since the most significant bit of the C′ term is equal to 0, these two values are
driven to the IEAC adder. This adder increments the integer sum of its input vectors
when the carry output of their integer addition is 0, and leaves it unchanged other-
wise [39]. In our example, the IEAC adder produces 010010012 and since its inputs
are not complementary, the most significant bit of the result is equal to 0. Hence the
output is D = 0010010012 = 7310.

2.2 Normal Modulo 2n + 1 Addition/Subtraction

The modulo 2n +1 addition of [37] and the modulo 2n +1 subtraction of the previous
subsection can be combined into a single circuit that can perform addition or subtrac-
tion depending on the value of an input signal M . Addition (subtraction) is performed
when M = 0 (M = 1). The combined adder/subtractor is based on an IEAC parallel
adder and an IEAC CSA.

In case of addition, the IEAC CSA accepts as inputs the An−1:0,Bn−1:0 and C

vectors. The outputs of the IEAC CSA are driven directly to the IEAC adder. In case
of subtraction, the IEAC CSA accepts as inputs the An−1:0 and B̄n−1:0 vectors and
the n least significant bits of the C′ vector. The outputs of the IEAC CSA are driven
to two n-bit multiplexers with a common select signal equal to the most significant
bit of the C′ vector (an ∧ bn) and the outputs of the multiplexers are driven to the
IEAC adder. Both cases can be covered by the circuit given in Fig. 3. A series of
2-input XOR logic gates are used to invert the n least significant bits of the B input
operand in case of subtraction. Furthermore, the two correction terms C and C′are
combined into an (n+1)-bit correction term C′′ = c′′

n · · · c′′
0 , where c′′

n = M ∧an ∧bn,
c′′
n−1 = · · · = c′′

2 = M , c′′
1 = M ∧ (an ∧ bn) and c′′

0 = M ∧ (an ⊕ bn) ∨ M ∧ an ∧ bn.
Bit c′′

n is used as the select signal of the two multiplexers.
Similar simplifications to those presented in the previous subsection can also

be performed on the two multiplexers of Fig. 3. Furthermore, the two rightmost
FAs along with their driving logic can also be simplified since an(bn) and ai(bi),
0 ≤ i ≤ 1, cannot be simultaneously at 1. The above modifications result in a more
efficient circuit, in terms of area and delay that is shown in Fig. 4. The simplified
logic equations for the outputs of each of the two rightmost cells are:

s0 = (an ∧ bn) ∨ (a0 ∧ bn) ∨ (a0 ∧ b0) ∨ (

M ∧ an ∧ b0
) ∨ (

M ∧ an ∧ b0
)

∨ (

an ∨ bn ∨ a0 ∨ b0
)

,

c0 = (

M ∧ an ∧ bn

) ∨ (

b̄n ∧ a0 ∧ b̄0
) ∨ (

M ∧ an ∧ b0
)

,

s1 = (a1 ∧ b1) ∨ (

a1 ∧ an ∧ bn

) ∨ (

M ∧ an ∧ b1
) ∨ (

a1 ∨ bn ∨ b1
)

, and

c1 = (

a1 ∧ b1
) ∨ (

M ∧ b1
)

.
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Fig. 3 Modulo 2n + 1 adder/subtractor for operands in the normal representation

2.3 Modulo 2n + 1 Subtractors for the Diminished-one Representation

Let A∗ = a∗
n−1 · · ·a∗

0 and B∗ = b∗
n−1 · · ·b∗

0 denote the diminished-one representations
of A and B , respectively, with 0 < A,B < 2n + 1. Both A∗ and B∗ are n bits wide,
while A∗ = A − 1 and B∗ = B − 1. A diminished-one subtractor of A and B is a
circuit that accepts A∗ and B∗ and produces the diminished-one representation D∗
of the difference D = |A − B|2n+1. It holds that

D∗ = |A − B − 1|2n+1 = ∣
∣
(

A∗ + 1
) − (

B∗ + 1
) − 1

∣
∣
2n+1

= ∣
∣A∗ + (

2n − 1
) − B∗ + 1

∣
∣
2n+1 = ∣

∣A∗ + B̄∗ + 1
∣
∣
2n+1 (2)

Ignoring zero operands and results, it is well known [39] that a modulo 2n +
1 adder for diminished-one operands is equivalent to an IEAC adder, which, when
driven by two n-bit operands X and Y , computes |X+Y +1|2n+1. Hence, the modulo
2n + 1 subtraction for operands in the diminished-one representation indicated in (2)
can be performed by an n-bit IEAC adder driven by A∗ and B̄∗.
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Fig. 4 Proposed modulo 2n + 1 adder/subtractor for operands in the normal representation

Example 2 Let us consider that n = 8, A = 8510 and B = 1210. Then A∗ = A − 1 =
010101002 = 8410, B∗ = B − 1 = 000010112 = 1110, and D∗ = |A − B − 1|257 =
7210. The values A∗ and B̄∗ = 111101002 are driven to an 8-bit IEAC adder whose
result is equal to 010010002 = 7210.

In the following, we focus on the cases where A or B or the result are equal to
zero. Arithmetic circuits that deal with operands in the diminished-one representa-
tion usually utilize an extra bit per input/output operand, along with the n bits of its
diminished-one representation for indicating the case of a zero value [10].

Let us denote as Az and Bz the zero indication bits of A and B respectively, and
as Dz the zero indication bit of D. The values of Dz and D∗ for the four different
combinations of Az and Bz are given in Table 1. The third line of Table 1 is justified
as follows: When A = 0 and B �= 0, then D = |A−B|2n+1 = |−B|2n+1 �= 0. Hence,
Dz = 0 and

D∗ = | − B − 1|2n+1 = ∣
∣
(

2n + 1
) − (

B∗ + 1
) − 1

∣
∣
2n+1

= ∣
∣
(

2n − 1
) − B∗∣∣

2n+1 = ∣
∣B̄∗∣∣

2n+1 = B̄∗ (3)
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Table 1 Truth table for
diminished-one modulo 2n + 1
subtraction

�
Depends on the values of A∗

andB∗

Az Bz D Dz D∗

0 0 |A − B|2n+1
� |A∗ − B∗ − 1|2n+1

0 1 |A|2n+1 0 A∗
1 0 | − B|2n+1 0 B̄∗
1 1 0 1 0

Fig. 5 A modulo 2n + 1
subtractor for operands in the
diminished-one representation
with zero-handling

Figure 5 presents an architecture for a modulo 2n + 1 subtractor for operands that
follow the diminished-one representation, which is capable of handling zero operands
and results. It is based on an n-bit IEAC adder and an n-bit 4-to-1 multiplexer. Az

and Bz are used as the multiplexer select signals. The zero indication of the result is
equal to 1 when: (a) A = B = 0, or (b) A = B and A,B �= 0. The first case can be
detected by a 2-input AND gate whereas the second case can be detected by checking
whether A∗ and B̄∗ are bitwise complementary vectors, or equivalently, by utilizing
the enhanced IEAC adder used in the previous subsection for the normal operands.

Unfortunately, the 4-to-1 multiplexer resides on the critical path of the circuit and
therefore contributes to the delay of the modulo subtraction operation. A similar prob-
lem appears in the modulo 2n + 1 adder’s case as well. To remove this additional de-
lay, [10] presented an adder architecture that embeds the treatment of zero operands
within the parallel prefix structure of the IEAC adder and cancels the need for the
4-to-1 multiplexer. Since the proposed modulo 2n + 1 subtractor for diminished-one
operands is similarly built around an IEAC adder, we can also eliminate the 4-to-1
multiplexer by using as the adder the one presented in [10]. Then the resulting mod-
ulo subtractor circuit takes the form of the one in Fig. 6. The adder can use as inputs,
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Fig. 6 Proposed
diminished-one modulo 2n + 1
subtractor with zero-handling
capability

the A∗ and B̄∗ n-bit operands along with the Az and Bz zero indications. However,
when Bz = 1 (B = 0), the second input of the adder should be driven with the all-
zeros value and not with the all-ones value, in order to get the correct result. Hence,
n 2-input NOR gates have to be used. The first input of every NOR gate is connected
to Bz, while the second input is connected to b∗

i , 0 ≤ i < n.

2.4 Diminished-one Modulo 2n + 1 Addition/Subtraction

A combined modulo 2n + 1 adder/subtractor for operands in the diminished-one rep-
resentation can be straightforwardly derived. This uses an extra operation mode input
M . Addition (subtraction) is selected by setting M to 0 (1). The circuit is presented
in Fig. 7. It utilizes the zero-handling diminished-one modulo 2n + 1 parallel prefix
adder presented in [10]. The first n-bit input is connected to the A∗ operand whereas
the second n-bit input is connected to the outputs of an n-bit 2-to-1 multiplexer with a
select signal equal to M . When M = 0,B∗ is driven to the input of the adder, whereas
when M = 1, bi ∨ Bz, 0 ≤ i < n, are driven to the input of the adder as required for
the subtraction operation according to the analysis given in Sect. 2.3.

3 Modulo 2n − 1 Subtractors and Adders/Subtractors

Although straightforward, for the sake of completeness, the design of modulo 2n − 1
subtractors and combined adders/subtractors is briefly presented in the following.

Let A = an−1 · · ·a0 and B = bn−1 · · ·b0 denote two n-bit modulo 2n −1 operands,
such that 0 ≤ A, B < 2n − 1. The difference, D, of A and B modulo 2n − 1 is equal
to

D = |A − B|2n−1 = ∣
∣A + (

2n − 1
) − B

∣
∣
2n−1 = ∣

∣A + B̄
∣
∣
2n−1 (4)



Circuits Syst Signal Process (2011) 30:1445–1461 1455

Fig. 7 Proposed modulo 2n + 1
adder/subtractor for operands in
the diminished-one
representation with
zero-handling capability

Fig. 8 Modulo 2n − 1
adder/subtractor

where B denotes the one’s complement of operand B . It is obvious that the differ-
ence D is actually an addition of A and B modulo 2n − 1, resulting that way in a
straightforward hardware implementation based on a modulo 2n − 1 adder.

Furthermore, a combined modulo 2n − 1 adder/subtractor can be also easily de-
rived by utilizing n 2-input XOR logic gates in order to invert the bits of operand B

in case of subtraction (M = 1), as shown in Fig. 8.
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Table 2 Area and delay estimates according to the unit-gate model

Architecture Delay Area

Subtractors

Normal modulo 2n + 1 [31] 2 logn + 11 3n log(n(n + 1)) + 3 log(n + 1) + 8n + 31

Normal modulo 2n + 1 (proposed) 2 logn + 7 (9/2)n log n + (9/2)n + 12

Diminished-one modulo 2n + 1 (proposed) 2 logn + 7 3n logn + 4n + 6

Modulo 2n − 1 [5] 3 logn + 6 3n logn + 5n + 7

Modulo 2n − 1 (modulo adder-based) 2 logn + 3 3n logn + 4n

Adders/subtractors

Normal modulo 2n + 1 (proposed) 2 logn + 9 (9/2)n log n + (21/2)n + 25

Diminished-one modulo 2n + 1 (proposed) 2 logn + 9 3n logn + 7n + 6

Modulo 2n − 1 (modulo adder-based) 2 logn + 5 3n logn + 6n

4 Evaluation and Comparisons

In this section we compare the proposed circuits against previous proposals and we
present experimental results.

Table 2 summarizes area and delay requirements, in equivalent gates, of all differ-
ent architectures under comparison, assuming the unit gate model [34]. This model
assumes that each monotonic two-input gate counts as one equivalent gate for both
area and delay, while an XOR/XNOR gate counts as two equivalent gates for area
and delay. We assume that all binary adders follow the Kogge–Stone [18] architec-
ture while the IEAC adders and the modulo 2n − 1 adders follow the architectures
presented in [36] and [16], respectively. For the diminished-one modulo 2n + 1 case,
the parallel-prefix adder architecture with a carry increment stage, presented in [10],
is considered.

Since we are not aware of any other work on combined modulo 2n ± 1
adders/subtractors, no comparison with other proposals is possible. However, it is
obvious that the combined adders/subtractors have a slight area and delay overhead
compared to the corresponding modulo adders or subtractors.

The proposed subtractors for operands in the normal representation consist of:
(a) (n − 1) half adders for the IEAC CSA and a simplified combinational cell at the
least significant bit position, (b) an enhanced IEAC adder for the final addition [37],
and (c) n 2-input gates for driving the appropriate inputs to the IEAC adder. We
compare our proposal against the recently proposed subtractors for the normal repre-
sentation [31]. The architecture of [31] was based on the following equation:

|A − B|2n+1 =
{ |A − B|2n+1 if A − B ≥ 0

|A − B + 2n + 1|2n+1 if A − B < 0
(5)

To implement (5), [31] first converts the input operands A and B from unsigned
numbers to the signed ones. It then computes both terms of (5) in parallel, using one
2-input binary adder and one 3-input binary adder. Finally, one (n + 1)-bit 2-to-1
multiplexer is used to select between the outputs of the two binary adders and derive
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Table 3 Unit-gate area and delay estimates of modulo 2n + 1 subtractors for operands in the normal
representation

n Area Delay

[31] Proposed Savings [31] Proposed Savings
(gate eqs.) (gate eqs.) (%) (gate eqs.) (gate eqs.) (%)

4 122 66 45.8 15 11 26.7

8 253 156 38.2 17 13 23.5

16 559 372 33.5 19 15 21.1

the correct result. Some further logic is also required that generates the selection
signal of the multiplexer.

Comparing the subtractors of [31] with the proposed ones, we can notice that
the 2-input binary adder of [31] and the IEAC adder have similar area and delay
requirements. The architecture of [31] further requires a 3-input binary adder and a
(n + 1)-bit 2-to-1 multiplexer, whereas the proposed architecture, besides the IEAC
adder, requires an IEAC CSA which mainly consists of half adders, and n 2-input
logic gates. Hence, we expect that the proposed subtractors will result in significantly
less area and delay than those of [31].

We present in Table 3 the area and delay estimates, according to the unit-gate
model, of the normal modulo 2n + 1 subtractors for three different values of n, that
is, n = 4,8 and 16, assuming the proposed architecture as well as the architecture
of [31]. We have also described in HDL the corresponding circuits. After validat-
ing the correct operation of the HDL descriptions, each design was synthesized and
mapped to a 90-nm power-characterized CMOS standard-cell library, assuming typi-
cal process parameters. Finally, the area and delay estimates were derived. To obtain
the average dynamic power estimations, we followed a simulation-driven approach.
We applied 216 random input vectors at a 500-MHz frequency at each design netlist
and measured the average power dissipation using a commercial power estimator.
The same vectors were applied to the corresponding netlists of the architectures un-
der comparison. The attained area, delay and power estimates for the normal modulo
2n + 1 subtraction circuits are presented in Table 4. The derived results indicate that
the proposed modulo 2n + 1 subtractors offer significant savings in area and average
power dissipation compared to the circuits of [31]. Reductions of up to 49 and 50%
in the required implementation area and the average power consumed are reported in
Table 4, while reductions in delay of up to 19% are also observed.

The proposed modulo 2n +1 subtractors for operands in the diminished-one repre-
sentation, for a specific value of n, consist of: (a) n NOT logic gates for inverting the
B∗ operand, and (b) an IEAC adder. If zero-handling is also required, then the pro-
posed subtractors consist of: (a) n 2-input NOR gates for controlling the B∗ operand,
and (b) a diminished-one modulo 2n + 1 adder with embedded zero-handling capa-
bility.

To the best of our knowledge, there is no other architecture proposed for sub-
traction of operands that follows the diminished-one representation. It is however
obvious that the proposed modulo 2n + 1 subtractors offer comparable area, delay
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Table 4 CMOS VLSI area, delay and power estimates of modulo 2n + 1 subtractors for operands in the
normal representation

n Area Delay Average power

[31] Proposed Savings [31] Proposed Savings [31] Proposed Savings
(µm2) (µm2) (%) (ns) (ns) (%) (mW) (mW) (%)

4 2094 1064 49.2 0.37 0.30 18.9 0.90 0.45 50.0

8 3926 2499 36.3 0.45 0.37 17.8 1.56 0.98 37.2

16 8385 6101 27.2 0.52 0.44 15.4 3.24 2.39 26.2

Table 5 Unit-gate area and delay estimates of modulo 2n − 1 subtractors

n Area Delay

[5] Modulo adder-based [5] Modulo adder-based
(gate eqs.) (gate eqs.) (gate eqs.) (gate eqs.)

4 51 40 12 7

8 119 104 15 9

16 279 256 18 11

Table 6 CMOS VLSI area, delay and power estimates of modulo 2n − 1 subtractors

Area Delay Average power

n [5] Modulo adder-based [5] Modulo adder-based [5] Modulo adder-based
(µm2) (µm2) (ns) (ns) (mW) (mW)

4 932 596 0.36 0.19 0.49 0.29

8 1969 1584 0.39 0.24 1.10 0.77

16 4745 4197 0.48 0.30 2.49 1.83

and power characteristics with those of the corresponding adders, since their only
overhead against the latter is few logic gates.

A modulo 2n − 1 subtractor can be designed using: (a) n NOT logic gates for
inverting the B operand, and (b) a modulo 2n − 1 adder, such as the one presented
in [16]. Another architecture was proposed in [5] for FPGA implementations. The
modulo 2n − 1 subtractors of [5] are based on the following equation:

|A − B|2n−1 =
{

K if Cout = 1
K − 1 if Cout = 0

(6)

where K is the n-bit result and Cout is the carry-out bit of the binary subtraction
A − B = A + B̄ + 1 = 2nCout + K . The corresponding circuits are implemented by
using a binary adder and a mux-based decrementer. Since a modulo 2n − 1 adder has
similar area and delay requirements with those of a binary adder/subtractor in CMOS
VLSI implementations, we expect the modulo 2n − 1 subtractors that are based on
the modulo 2n − 1 adders to be more suitable for CMOS VLSI implementations
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that those proposed in [5]. We present in Tables 5 and 6 the area, delay and aver-
age power dissipation estimates for both architectures, based on the unit-gate model
closed forms of Table 2 and synthesized HDL descriptions. The results validate that,
for CMOS VLSI implementations, the modulo adder-based subtractors of Sect. 3 are
more efficient.

An alternative method for designing modulo 2n ± 1 subtractors would be by uti-
lizing redundant number systems. In [32], modulo 2n ± 1 adders and subtractors are
proposed that use the Stored-Unibit Trasfer (SUT) redundant number representation.
This redundant number representation results in constant time addition and subtrac-
tion since the carry propagation is limited to a single digit position. However, both
the inputs and outputs of the circuits of [32] follow the SUT representation. To this
end, converters from/to binary/SUT representation have to be used. Unfortunately,
these converters are inefficient in both terms of area and delay since they require
carry propagation through all the digits [14] and therefore this representation is not
commonly adopted.

5 Conclusions

Moduli choices of the 2n ± 1 forms have received significant attention in building
RNS-based systems. We have presented novel modulo 2n + 1 subtractor architec-
tures, for operands that follow either the normal or the diminished-one representation.
Experimental results have validated that the proposed modulo 2n + 1 subtractors for
operands in the normal representation offer significantly less area and consume sig-
nificantly less power than those previously reported [31], while also being faster. The
proposed modulo 2n + 1 subtractors for operands in the diminished-one represen-
tation are capable of handling zero-operands and stem from adding few logic gates
over the corresponding diminished-one modulo 2n + 1 adders. As a result, their area,
delay and power characteristics are very close to those of the adders and therefore
are of a high efficiency. Arguments on the design of modulo 2n − 1 subtractors have
been also given. The modulo 2n − 1 adder-based subtractors were shown to be more
efficient in CMOS VLSI implementations than those presented in [5]. Finally, mod-
ulo 2n ± 1 combined adder/subtractor circuits have been introduced that are suitable
for applications where the hardware overhead of having separate circuits for modulo
addition and subtraction is intolerable.
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