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A Unifying Approach for Weighted and Diminished- 1
Modulo 2" 4 1 Addition

H. T. Vergos, Member, IEEE, and C. Efstathiou

Abstract—In this paper, it is shown that every architecture pro-
posed for modulo 2™ + 1 addition of operands that follow the di-
minished-1 representation can also be used in the design of modulo
2™ 4 1 adders for operands that follow the weighted represen-
tation. This is achieved by the addition of a constant-time oper-
ator composed of a simplified carry-save adder stage. The experi-
mental results indicate that many architectures already proposed
for the diminished-1 case, lead to very efficient adders for weighted
operands, under this unifying approach.

Index Terms—Diminished-1 representation, modulo 2™ 4 1 ad-
dition, residue arithmetic, residue number system.

I. INTRODUCTION

ESIDUE arithmetic has been used in digital computing
R systems for many years. In particular, arithmetic modulo
2™ 4+ 1 appears to play an important role in a variety of applica-
tions. Modulo 2™ + 1 arithmetic is most commonly met in the
residue number system (RNS) [1], which is an arithmetic system
well-suited to applications in which the operations are limited
to addition, subtraction and multiplication; a common case for
several digital signal processor (DSP) algorithms. The RNS has
been used for the design of digital signal processors [1]-[4], fi-
nite-impulse response (FIR) filters [5], [6], and communication
components [7], [8].

Three-moduli sets of the form {2™ — 1,2™, 2" + 1} have re-
ceived significant attention as the RNS base, mainly because of
the existence of efficient residue to binary converters [9]. Addi-
tion in such systems is performed using three channels, that, in
fact, are a modulo 2™ — 1 (equivalently one’s complement), a
modulo 2™ and a modulo 2" + 1 adder. From this, we conclude
that the design of an efficient modulo 2™ + 1 adder is a vital
task in RNS-based applications that include a modulus of the
2" + 1 form. Unfortunately, in an RNS that uses a three moduli
set {2" —1,2",2" 41}, the modulo 2™+ 1 channel becomes the
execution-rate bottleneck, since it has to deal with (n + 1)-bit
operands, while the other two channels operate on 7n-bit ones.

The diminished-1 representation [10] was introduced to al-
leviate this problem, by having each operand represented de-
creased by one compared to its weighted representation and by
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deriving the results in an alternative manner when one or both
operands or the results are zero. Let A and B denote two n-bit
operands, such that 0 < A, B < 2". In the diminished-1 rep-
resentation, A* and B* are used to represent A and B, with
A* = |A — 1|gny1 and B* = |B — 1|2n41. The diminished-1
sum S* is then computed as S* = |S — 1|gny; = |[A+ B —
1lan41 = |A* + B* + 1]an41, by a diminished-1 adder, which
is an adder that increments the integer sum of A* and B* when-
ever the carry flag of their respective integer addition is not set.
A diminished-1 adder can be derived by connecting the inverted
carry output of an integer adder back to its carry input. How-
ever, such solutions are inefficient due to the resulting oscilla-
tions [11]. Therefore, a number of efficient architectures that do
not suffer from oscillations [12]-[14] have been proposed.

The need for handling zero operands and results separately,
as well as the need for time and hardware consuming input
(output) translators from (to) the weighted to (from) the di-
minished-1 representation, make the use of the diminished-1
representation efficient only when a large number of calcula-
tions take place before a new conversion is required. In all other
cases, including all applications apart from RNS implementa-
tions, modulo 2" + 1 adders with operands in weighted repre-
sentation are more suitable. Efficient architectures for modulo
2™ + 1 adders for operands in weighted representation have also
been proposed [15], [16].

These two cases, namely modulo 2™ 4 1 adders that op-
erate on operands in the diminished-1 representation (hereafter
called diminished-1 adders) and those that operate on operands
that follow a weighted representation (hereafter called weighted
adders) have, so far, been considered distinct cases and efficient
architectures for them have been studied independently. In this
brief it is shown that these two alternatives can be unified. Given
two (n + 1)-bit numbers A and B, the problem of computing
two n-bit numbers Y and U, such that Y + U + 1 to be con-
gruent to A+ B modulo 2™ + 1, is attacked. It is shown that this
problem has a constant time solution, enabling every architec-
ture that has been or will be proposed for diminished-1 addition
to also be used for addition of operands in the weighted rep-
resentation. The required unifying arithmetic operator is just a
simplified inverted end-around carry-save-adder (CSA) stage.

The rest of this paper is organized as follows. In Section II,
an architecture for weighted adders that relies on the use of di-
minished-1 adders is formally derived. This architecture is then
used in Section III along with already known architectures for
diminished-1 adders, for exploring weighted adders with inter-
esting area and delay tradeoffs. Our conclusions are drawn in
Section IV.
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Fig. 1. CSA stage with inverted end-around carry.
II. UNIFIED DESIGN DERIVATION nt i
= Z (2 X (yi—1 + Uz)) + uo
Suppose that A = apa,_16,_2,...,a10690 and B = —
bnbn—_1bn_2,...,b1by denote two operands in the weighted
representation, with 0 < A, B < 2™, Let A,, and B,, denote the + 2%y, 1 + 1 +1
n-bit vectors composed of the least significant bits of A and B, 9nt1 _—
respectively. Equivalently, we have that A = a,, x 2" + A,, and ne1
B = bn. X 2".-1— B,,. For the weighted modulo 2™ + 1 addition — Z (2i X (Yio1 + ) + o
of A with B it holds that P
|A+ Blang1 = [(2" X an + Ap) + (2" X by + Bp)l2n 41 —Yn—1+1 +1
= |2n X (an + bn) + An + Bn 2n41- (1) 2n 41 241
n—1
Let s, anq (;n+1 dethe the sum .and carry bits gf the (a, + _ Z (2i X (i1 + ul))
b,,) X 2™ addition contained in relation (1), respectively, and let =
T denote the complement of z. s,, and ¢, 41 are bits with weights
2" and 2", respectively. Using them in (1) produces +u+ 7,1 +1
|A+an+1 = |2n+1 X Cn+1+2n X Sn+An+Bn on+1 _ ||Y+U +12n+1 2n+1
= Ay + Bn — 2 X Cp1 — Snlan 1. ) B FH T AR
=Y 4+U+1l2n41 Q)
Using that for € {0, 1} it holds that
n where Y = Yn—2Yn—-3, ... 73/0?11—1-
| = zlangr = 2" + 1 — zfonps The previous analysis indicates that the vectors A,,, B,,, and
= 12" 4+ (1 — x)|2ny1 D can be added by the inverted end-around carry save adder
= [T + 2"|pn 41 = |T — 1]2n41 3) stage presented in Fig. 1. We can then drive its outputs Y and
U to a diminished-1 adder, that will provide at its output |Y" +
from (2), we can further derive that U + 1|2n 41, that is, it will provide the n least significant bits of
o the weighted modulo addition of A and B.
|A+ Blangr = [An + Bpn + 2 X Cag1 + 80 — (24 1)[2n 41 The most significant bit of the weighted sum should be at

=|An+Bn+2XCr1+5,+2" — 22041
=|An+ B+ (2" —4+2 %011 +5,)

+ 2|on 41
= ||An+Bn+D+1

2n 41 + 1

2n 41 “4)

where D = 2™ — 4 4+ 2 X ¢,71 + S,. D is represented by the
n-bit vector 111...1¢,115,.

Suppose  that Y™* = Yn—1Yn—2-..Yo and
U =up_1up_2...ug denote the carry and sum output vectors
of the carry-save addition of A,,, B,, and D indicated in (4),
respectively. It then holds that

|A+ Blani1 = ||An + Bn + D+ 1]ang1 + 12n g1
n—1 n—1
=[S xw + T xw)
i=0 i=0
+1 +1
2n41 2n41

1, only when |A + Blany1 = 2", or equivalently when |V +
U + 1|gny1 = 27, or equivalently (since 0 < Y, U < 2" —
1) when Y + U = 2" — 1, that is, when Y and U are bit-
wise complementary. This condition can be easily detected as
the logical AND of the XOR of the bits of Y and U with the
same weight. Since in every fast adder architecture there is a
preprocessing stage that apart from the generate and propagate
terms also computes the half-sum term, that is the XOR of the
corresponding input operands bits, the extra hardware required
for the most significant bit of the weighted addition is small; just
ANDing the half-sum terms together. It should be noted that this
operation will not add any delay on the critical path of the adder.

Fig. 2 presents the implementation that results from the pre-
vious analysis for a modulo 2™ 4 1 adder for operands in the
weighted representation. It is composed of a diminished-1 adder
and an inverted end-around-carry CSA stage. The full adders of
the CSA stage perform the |A,, + B,, + D|a» 41 addition. The
FAs at bit positions 2 up to (n — 1) are denoted as FATs since
one of their operands coming from vector D is 1. Therefore,

Authorized licensed use limited to: University of Patras. Downloaded on October 18, 2008 at 06:29 from IEEE Xplore. Restrictions apply.



VERGOS AND EFSTATHIOU: UNIFYING APPROACH FOR WEIGHTED AND DIMINISHED-1 MODULO 2™ + 1 ADDITION

1043

an by an by,

31 bt @n2 Pnz gy by ans bos a; by @& b ary b au@bu

Y Yy vy v yvy ¥ \AA} LAA
FA*| |FA"| |FA*| |FA* s FA*| |FA"| |FA FA
? | J— S| ,_J | S I

L2 2R 2 Y VY YV VY (A

= t— Nt E,/ t— = =

e o o

Diminished-1 adder
(any architecture)

Sp Sn-1 Sn2

A R A

Fig. 2. Modulo 2™ + 1 adder for weighted operands built using a diminished-1 adder.

Fig. 3. Simplified circuitry for the least significant bit positions.

they have a hardware and delay complexity equal to that of a
half adder.

Several simplifications can also be performed to the two right-
most FAs along with the accompanying NAND and XNOR gates
by considering that a,,(b,, ) and a; or ag (and by or bg) can not be
simultaneously at 1. Fig. 3 presents examples of simplified cir-
cuits at these least significant bit positions. However, even more
aggressive simplification is possible within the preprocessing
stage of the diminished-1 adder by considering that the propa-
gate and generate signals at bit position 1 depend on signals yg
and u; that are both dependent on a,, and b,,. The most signifi-
cant carry bit produced by the CSA is inverted and then driven
to the least significant position. The sum and carry bits of equal
weight produced by the CSA stage are then driven to the di-
minished-1 adder. Obviously, any architecture proposed, can be
used for the latter. The diminished-1 adder’s result forms the
n least significant bits of the weighted sum. The indication of
complementary input vectors at the diminished-1 adder is the
most significant bit of the weighted sum.

III. EMERGING ARCHITECTURES

A number of distinct architectures has already been proposed
for diminished-1 modulo 2™ 4 1 addition. Using each of these
architectures in the unified design of Fig. 2 provides a new ar-
chitecture for weighted modulo 2" 41 adder design with its own
area and delay characteristics, which we explore in this section.

For our comparisons, we consider five different implementa-
tions for the diminished-1 adder of Fig. 2, namely as follows.

* The single and multi level carry-lookahead (CLA) archi-
tectures proposed in [13]. The resulting weighted-adders
will be referred to as CLA weighted adders.

* The parallel-prefix architectures proposed in [12]. The re-
sulting weighted adders will be referred to as Ladner—Fis-
cher (LF) or Kogge—Stone (KS) weighted adders when a
LF or a KS prefix algorithm is used in the carry computa-
tion unit, respectively.

* The parallel-prefix (PPD) architecture proposed in [13].
The resulting weighted-adders will be referred to as PPD
weighted adders.
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TABLE I
DELAY (NANOSECONDS) AND AREA (MICROMETERS SQUARED) RESULTS FOR WEIGHTED MODULO 2™ + 1 ADDERS
n=4 n=8 n=16 n=32
Architecture | Delay | Area | Delay | Area | Delay Area Delay Area
CLA 0.46 | 2,656.6| 0.66 | 5,370.9 | 0.77 | 9,778.1 0.91 | 20,603.5
LF 0.55 | 2,415.1| 0.67 | 4,0659 | 0.77 | 8,147.9 0.89 | 16,987.7
KS 0.54 | 2,606.1| 0.66 | 4,687.9 | 0.75 | 9,205.1 0.87 | 19,1554
PPD 0.50 |2,110.1| 0.59 |5,444.1| 0.69 | 10,521.9| 0.80 | 21,754.6
SP Not applicable | 0.62 | 4,632.4 | 0.73 9,033.8 | 0.84 | 19,008.6
PLNG 0.49 |2,413.7| 0.58 |4,793.0| 0.67 | 9,512.9 | 0.77 | 20,114.8
TPP 0.54 |2,073.5| 0.64 | 4,756.9 | 0.75 9,209.0 | 0.87 | 19,321.1
HIAS 0.63 (1,719.8| 0.81 | 4,561.6 | 0.90 | 9,546.2 | 0.99 | 19,796.6

* The select-prefix (SP) architecture proposed in [14]. We
will refer to the resulting weighted adders using the SP
weighted adders notation.

* The parallel-prefix architectures based on Ling carries ex-
plored in [17]. The resulting weighted-adders will be de-
noted as PLNG weighted adders.

We compare the area and delay characteristics of these
emerging weighted adders against those of the totally par-
allel-prefix (TPP) adders, suggested in [16] (denoted as TPP
adders), and the adders that rely on the multiplexing of the
propagate and generate signals before used in a CLA carry
computation unit, suggested in [15], which will be denoted as
HIAS adders. The latter architectures are considered the current
most efficient ones for weighted adder design.

For attaining our comparison results, we extended the gen-
erator of [18], for producing structural HDL descriptions for all
adder architectures under comparison. In this way, HDL models
for the examined adders with operand sizes of up to 32 bits
were generated. After simulating every description produced,
each design was subsequently mapped in a 0.18-um technology
library [19] assuming typical conditions (1.8 V, 25 °C). Each
mapped design was iteratively optimized until no further delay
savings were possible. The optimized designs then underwent
successive area recovery steps. The same design constraints,
such as maximum fan-out, output capacitance, and available
input drive strength, were considered for all designs. The op-
timized netlists along with their constraints were then passed to
a standard cell place and route tool. The floorplan initialization
information was kept constant for each adder size. After a con-
straint driven place and route procedure the netlists were back
annotated with the extracted information for gathering the re-
ported results.

Table I presents the attained area and delay results for all ex-
amined architectures. The delay results are given in nanosec-
onds, while the area results in micrometers squared. The latter
include both cell and interconnect area. The CLA and the SP
lines of Table I represent the fastest designs achieved after ex-
amining a variety of possibilities. In the case of the CLA adders,
it represents the best result out of single or double CLA levels. In
the case of the SP adders it represents the fastest adder achieved
after an exploration of the number of prefix blocks and the al-
gorithm (LF or KS) used for them.

The results of Table I indicate that the resulting PLNG and
PPD architectures lead to the fastest weighted adders in all ex-
amined cases, excluding the n = 4 case. The PLNG architecture

outperforms the current fastest weighted adder architecture [16]
by approximately 10.5% over the examined adder range, while
the PPD one outperforms [16] by approximately 8%. This level
of performance however, also requires increased implementa-
tion area, which is approximately increased by 6% and 10.8%
by the PLNG and PPD architectures, respectively. The resulting
CLA adders are the fastest proposed in the smallest examined
case but inefficient in both area and delay terms in the wider
operands cases. LF and KS adders are faster than the CLA ones
and as fast as the fastest previously reported TPP adders for suf-
ficiently wide operands. The SP adders are efficient in area and
delay terms since in all examined cases offer smaller delay than
the currently fastest known TPP architecture with smaller im-
plementation area requirements. Considering the area x delay
product as a metric, the SP adders offer more efficient designs
than the TPP ones by approximately 5% in all the examined
operands range. Finally, the HIAS architecture provides area ef-
ficient adders only at the narrower operands case.

IV. CONCLUSION

The problems of designing modulo 2™+ 1 adders for operands
in the normal weighted and in the diminished-1 representations
have thus far been considered separate and studied indepen-
dently. This paper has shown that every architecture that has
been or will be proposed for diminished-1 adders can also be
used in the design of weighted adders, by the addition of an in-
verted EAC CSA stage.

Our results indicate that using this unifying methodology and
previously reported architectures for diminished-1 adders, more
efficient architectures for weighted adders can be reached. The
emerging PLNG and PPD architectures lead to the fastest re-
ported weighted adders, while the CLA one to efficient adders
for narrow operands. The emerging SP adders also offer the
same or even higher operating speed than the fastest known pro-
posal with lower implementation area complexity.
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