
Design of efficient modulo 2n 1 1 multipliers

H.T. Vergos and C. Efstathiou

Abstract: A new modulo 2n
þ 1 multiplier architecture is proposed for operands in the weighted

representation. A new set of partial products is derived and it is shown that all required correction
factors can be merged into a single constant one. It is also proposed that part of the correction factor
is treated as a partial product, whereas the rest is handled by the final parallel adder. The proposed
multipliers utilise a total of (nþ 1) partial products, each n bits wide and are built using an inverted
end-around-carry, carry-save adder tree and a final adder. Area and delay qualitative and quantita-
tive comparisons indicate that the proposed multipliers compare favourably with the earlier
solutions.
1 Introduction

Residue arithmetic has been used widely in several
applications of computer systems. Such applications
include the design of generic or specialised digital signal
processors (DSPs) that adopt a residue number system
(RNS) [1–6], number theoretic transforms that are widely
used in convolution/correlation computations [7–10], the
implementation of cryptographic algorithms [11] and fault-
tolerant digital system design. The adoption of an RNS has
been proved very useful in enhancing the performance of
modulation components used in communications [12] and
in digital filter design [6], in which it can help reduce the
power consumption when the number of the taps used in
the filter increases [13].

Modulo 2n
þ 1 arithmetic, in particular, has attracted

special attention, mainly as a part of the well-known three-
moduli set f2n 2 1, 2n, 2n

þ 1g, which has been extensively
used in general- and special-purpose RNS implementations.
In an RNS that uses the three-moduli set f2n 2 1, 2n,
2n
þ 1g, the modulo 2n

þ 1 becomes a bottleneck, since it
has to deal with (nþ 1)-bit operands, whereas the rest
two channels operate on n-bit ones. To overcome this
problem, Leibowitz [7] introduced the diminished21
representation. Under this representation, each number is
decreased by 1. Arithmetic operations are in this way per-
formed on n-bit operands, whereas the result is derived in
an alternative manner when one or both operands are zero.

The prime moduli of the form 2n
þ 1 apart from being

useful for ordinary RNSs, are vital in the Fermat number
transform (FNT) and useful in cryptography. The Fermat
number 216

þ 1, in particular, being the only Fermat
number of practical interest, was chosen for the modulo
multiplier in the works of Benaissa et al. [9] and Sunder
et al. [10] and for the square-and-multiply modulo exponen-
tiator in the implementation of the international data
encryption algorithm [11].

The Institution of Engineering and Technology 2007

doi:10.1049/iet-cdt:20060026

Paper first received 13th February and in revised form 20th June 2006

H.T. Vergos is with the Computer Engineering and Informatics Department,
University of Patras, 26500 Patras, Greece

C. Efstathiou is with the Informatics Department, TEI of Athens, 12210 Egaleo,
Athens, Greece

E-mail: vergos@ceid.upatras.gr
IET Comput. Digit. Tech., 2007, 1, (1), pp. 49–57
Due to these applications of modulo 2n
þ 1 arithmetic,

numerous algorithms and architectures have been proposed
for modulo 2n

þ 1 components including adders [14–16],
multi-operand adders and residue generators [17], squarers
[18] and multipliers [14, 19–26].

Although a modulo 2n
þ 1 product can be computed by

look-up tables implemented in ROM, the exponential
growth of the memory required makes such solutions unsui-
table for medium or large values of n. Several solutions have
therefore emerged that rely on arithmetic combinational
blocks. Table 1 summarises their architectural characteristics.

In the work of Hiasat [19], it was proposed that multipli-
cation is carried out with arithmetic blocks. An (nþ 1)-bit
binary multiplier was used, along with a residue generation
circuit. A major advance in the design of modulo 2n

þ 1
multipliers was achieved by Wrzyszcz and Milford [20].
The authors observed that the multiplication array required
can be reduced to n � n, since several groups of partial-
product bits cannot be simultaneously at 1. The architecture
of Wrzyszcz and Milford [20], however, suffers from the
use of three n-bit parallel adders connected in series and a
final row of multiplexors. In the work of Wang et al. [21],
diminished-1 multipliers with n-bit input operands were
considered. Apart from the multiplication array, a zero
partial-product counting circuit is required. Handling of
zero operands and results was not considered. The first
attempt to apply the radix-4 Booth recoding to modulo
2n
þ 1 multiplication appeared in the work of Ma [22].

The partial products used are (nþ 1) bits wide; furthermore,
one carry save adder (CSA) stage is required for result cor-
rection, along with a diminished-1 final parallel adder with a
carry input. Such an adder is implemented by a further CSA
stage and a diminished-1 parallel adder. The multipliers pre-
sented in the work of Zimmerman [14] also use Booth
encoding and n bits for their operands’ representation but
depart from the diminished-1 discipline, since, all operands
are in weighted form, except the 2n operand which is rep-
resented by the all 0s vector. This is done for achieving
an efficient design block for use in the international data
encryption algorithm (IDEA) block cipher. Although in
the work of Zimmerman [14] a scheme is described for
using the multipliers for weighted/diminished-1 operands,
this scheme implies a dedicated circuit that handles the 2n

value in the case of weighted operands or the incorporation
of a second parallel modulo adder in the case of
diminished-1 operands. Multipliers in which one operand
uses weighted representation, whereas the other uses the
49

Table 1: Architectural characteristics of the current and previous proposals

Hiasat [19] Wrzyszcz and

Milford [20]

Wang

et al. [21]

Ma [22] Zimmerman [14]

Operand

representation

weighted weighted diminished diminished proprietary

Number of partial

products

nþ 1 n n dn/2e þ 2 dn/2e

Width of partial

partial products

nþ 1 n n nþ 1 n

Multiplier

encoding

not discussed none none Booth Booth

Number of

parallel adders

1 3 1a 1a 1

Other circuits

required

Residue generator Multiplexer

row

Counter of

zero partial

products

CSA stage Extra circuits for

diminished-1

adaptation

Handling of zero

operands/results

yes yes no no proprietary

Curiger [23] Efsthiou

et al. [24]

Sausa and

Chaves [25]

Shaves and

Sousa [26]

This proposal

Operand

representation

proprietary diminished diminished/

weighted

weighted weighted

Number of partial

products

dn/2e n dn/2e þ 2 nþ1 or nþ 2 n

Width of partial

partial products

n n n n n

Multiplier

encoding

Booth none Booth none none

Number of

parallel adders

1 1 1a 1 1

Other circuits

required

None None CSA stage,

combinational

circuit for

correction

computation

none none

Handling of zero

operands/results

proprietary no yes yes yes

awith specific design
diminished-1 were investigated in the work of Curiger [23].
These multipliers are however specific to the cryptographic
application targeted.

In the work of Efstathiou et al. [24], diminished-1 multi-
pliers have been proposed that use an n � n partial-product
array along with a CSA tree. These multipliers were analyti-
cally and experimentally shown to outperform those of
Wang et al. [21] and Ma [22] in terms of delay and
power. However, treatment of zero operands or results
was not discussed. Modulo 2n

þ 1 multipliers for both
diminished-1 and weighted operand representation with
treatment of zero operands have been presented in the
work of Sousa and Chaves [25]. For both cases, radix-4
Booth recoding is employed to reduce the number of
partial products into approximately half. Both architectures,
however, require a CSA stage for the addition of a correc-
tion factor that is derived by a small combinational
circuit, as well as a final modulo parallel adder similar to
that of Wang et al. [21], that is with a carry input.
50
Furthermore, in the case of diminished-1 operands,
another correction is also introduced. The analytical and
experimental results indicated in the work of Sousa and
Chaves [25] show that the multipliers proposed outperform
the earlier solutions of Ma [22] and Zimmerman [14] if the
latter is adopted to diminished-1 or ordinary representation.
Comparative results against the multipliers proposed by
Efstathiou et al. [24] were not however given. Taking into
account the analytical models for the delays and areas pre-
sented in the works of Efstathiou et al. [24] and Sousa and
Chaves [25], we conclude that the architecture of Efstathiou
et al. [24] provides smaller multipliers. It also leads to faster
designs when n , 16 and to designs with the same delay as
those described in the work of Sousa and Chaves [25] for
n � 16. This should not be surprising, since it is well
known [14] that although Booth recoding leads to a
shallower adder tree (about two full adder (FA) stages are
saved on the critical path when the number of partial
products is cut in half), this saving may be compensated or
IET Comput. Digit. Tech., Vol. 1, No. 1, January 2007

overwhelmed by the delay of the recoding logic. Non-Booth
encoded modulo 2n

þ 1 multipliers have recently been inves-
tigated in the work of Chaves and Sousa [26].
Two architectures have been proposed; one with nþ 3
partial products and one with nþ 2 partial products.

In this manuscript, we propose a novel architecture, for
weighted representation of the input operands, which uti-
lises the observations made in the work of Wrzyszcz and
Milford [20]. The main improvements of the proposed
architecture lie in:

† using different partial products than those used in the
work of Wrzyszcz and Milford [20]. The new partial pro-
ducts can be computed faster.
† using only one total correction factor. This correction
factor is derived analytically and is shown to be a constant.
Therefore no extra circuit is required to compute it and
† splitting this correction factor in two parts. One part is
introduced as a partial product, whereas the addition of
the second part is assigned to the final-stage adder. This
enables us to use a fast parallel-prefix inverted
end-around-carry (EAC) parallel adder [15] (equivalently,
a diminished-1 modulo 2n

þ 1 adder) as the final-stage
adder.

The proposed architecture does not use Booth recoding and
utilises a total of (nþ 1) n-bit wide partial products. The
resulting multipliers obviously outperform the solutions
described in the work of Chaves and Sousa [26] in both
area and delay, since they use one or two partial products
less. We therefore compare the proposed multipliers with
those of Efstathiou et al. [24], which according to the
earlier discussion are currently the most efficient ones. Both
analytical and experimental comparison results are presented.
Our results indicate that the proposed multipliers offer the
same or higher operation speed as those of Efstathiou et al.
[24], while in parallel being more compact. Considering
however, that the proposed multipliers accept operands in
weighted form whereas those presented in the work of
Efstathiou et al. [24] accept operands in diminished-1
representation, it is clear that the proposed multipliers can
be used more efficiently, since they do not require time-
and hardware-consuming input/output translators, nor any
further circuit for handling zero operands and results.

2 Proposed architecture

The proposed multiplier architecture is based on merging the
correction factors that result from the formation and the
reduction of the new partial-products into a single correction
factor. This is described in detail in the following subsections.

2.1 Partial-product formation

Let A ¼ anan21 � � � a1a0 and B ¼ bnbn21 � � � b1b0 denote two
(nþ 1)-bit numbers in the range [0, 2n

þ 1). Obviously, in
the weighted representation, if an is 1 then all the remaining
bits in the representation of A are 0, and the same is true for
the remaining bits of B if bn is 1. This observation enabled
Wrzyszcz and Milford [20] to reduce the multiplication
array from an (nþ 1) � (nþ 1)-bit size down to n � n.
We follow a similar procedure to derive our new partial
products.
IET Comput. Digit. Tech., Vol. 1, No. 1, January 2007
Let jXjY denote the modulo Y residue of X. For the
multiplication of A with B, we then have

R ¼ jA� Bj2nþ1 ¼
Xn

i¼0

ai2
i
Xn

j¼0

bj2
j

�����
�����
2nþ1

¼
Xn

i¼0

Xn

j¼0

pi;j2
iþj

 !�����
�����
2nþ1

ð1Þ

where the partial-product bit pi,j is the logical AND of ai

with bj, that is pi,j ¼ ai ^ bj. Relation (1) indicates that
the partial-product matrix shown in Fig. 1 is required for
modulo 2n

þ 1 multiplication. The partial-product matrix
can be divided into four groups A, B, C and D shown in
Fig. 1. Note that only terms from one group can be different
from 0 at the same time. Therefore instead of arithmetically
adding, terms from different groups can be logically ORed.

We first perform the logical OR (hereafter denoted by _)
of corresponding terms of groups B, D and A in the
columns with weight 2n up to 22n22 and the logical OR of
the two terms of groups B and D with weight 22n21.
Since j22n21

j2nþ1 ¼ 2n21
þ 1, the latter term, qn21 ¼

pn,n21 _ pn21,n can be substituted by two terms qn21 in
the columns with weight 2n21 and 1, respectively, and
ORed with any term of group A there. Moreover, since
j22n
j2nþ1 ¼ 1, the term pn,n can be repositioned in the right-

most column and ORed with p0,0. After these
modifications, our partial-product matrix has the form
shown in Fig. 2, in which qi denotes pn,i _ pi,n.

Then, for obtaining an n � n partial-product array, every
term, suppose s, that appears to the left of the column with
weight 2n21, needs to be repositioned. Considering that

js2i
j2nþ1 ¼ �s2jijn

�� ��
2nþ1
¼ ð2n

þ 1� sÞ2jijn
�� ��

2nþ1

¼ �s2jijn þ 2n2jijn
�� ��

2nþ1

we can invert and reposition every s term of column i, with
n � i � 2n 2 2, to the i 2 nth column, taking into account a
correction factor of 2jijn2n, for each such complementation
and repositioning. For computing the correction factor,
COR1, required for moving all s terms, we can observe
that there is only one such term in the second partial

Fig. 1 Initial partial-product matrix

Fig. 2 Modified partial-product matrix
51

product in Fig. 2, imposing a correction of 202n, whereas the
third has two such terms imposing a correction
of (20

þ 21)2n ¼ (23 2 1)2n and so on, up to the nth partial-
product which will require a correction factor equal
to (20

þ 11
þ � � � þ 2n22)2n ¼ (2n21 2 1)2n. Summing all

these required corrections, we get that COR1 is given by

COR1 ¼ 2n
ð2ð1þ 2þ 22

þ � � � þ 2n�2
Þ � ðn� 1ÞÞ

¼ 2n
ð2n
� n� 1Þ ð2Þ

In this way, the reduced (n � n) matrix of partial products
(PPi) presented in Table 2 is derived, along with the correc-
tion factor indicated by (2), which needs to be taken into
account. Although the above partial products were derived
following the observations of Wrzyszcz and Milford [20],
they are somewhat different. Even the more complex of
them can be derived by AND–OR-invert gates, that can
be very efficiently implemented in CMOS technology. On
the contrary, the more complex partial products of
Wrzyszcz and Milford [20] require OR-AND-XOR gates
that are more area and time consuming.

2.2 Partial-product reduction

The n partial products in Table 2 and the correction factor in
(2), that is nþ 1 partial products in total, must be added
modulo 2n

þ 1, until two final summands are produced.
This can be performed by using either an (n 2 1)-stage
CSA array or a CSA tree (Wallace [27] or Dadda [28]
trees). It is well known that in integer multipliers, a CSA
tree results to irregular architectures. However, in our
case, the resulting array is completely regular, that is
well-suited for VLSI implementations. This is because the
same number of bits appears in every column of the array
and as we will show, the carry outputs at the most signifi-
cant bit position of each stage will be used as carry inputs
of the subsequent stage.

Suppose that the carry output of the nth column of stage i
is denoted by ci. This signal has a weight of 2n. Since

jci2
n
j2nþ1 ¼ j � cij2nþ1 ¼ j2

n
þ cij2nþ1

the carries out of the most significant bit position can be
complemented and added to the least significant bit position
of the next stage, forming an inverted EAC CSA tree. A cor-
rection factor of 2n must be taken into account for each such
carry recirculation. During the addition of our nþ 1 partial
products, n 2 1 carries of weight 2n will be generated and
therefore the correction, COR2, that would be required for
the inverted EACs is

COR2 ¼ j2
n
ðn� 1Þj2nþ1 ð3Þ

The total correction required is consequently given by the
addition of the factors derived in (2) and (3)

COR ¼ j2n
ð2n
� n� 1Þ þ 2n

ðn� 1Þj2nþ1

¼ j2n
ð2n
� 2Þj2nþ1 ¼ 3
52
Therefore (1) takes the form

R ¼ jA� Bj2nþ1 ¼
Xn�1

i¼0

PPi þ 3

�����
�����
2nþ1

ð4Þ

where the n partial products have been presented in Table 2.

2.3 Final-stage addition

A straightforward implementation for the multipliers, which
stems from (4), is to use COR as an extra partial product,
along with a fast modulo 2n

þ 1 adder (for example [16])
which accepts the two summands produced by the reduction
scheme (array/tree) and produces the product. In this
manuscript, however, we propose an alternative, more
effective solution. The solution that we propose is based
on several observations.

The first observation is that the fastest inverted EAC
parallel adder known [15] (equivalently, the fastest
diminished-1 modulo 2n

þ 1 adder) provides three gate
equivalents less delay than the fastest modulo 2n

þ 1
adder available [16], while in parallel leading to more
compact designs. Therefore it would be beneficial if
instead of a modulo 2n

þ 1 adder, an inverted EAC parallel
adder could be used. It should be noted, however, that since
such an adder can provide only n bits of the result, the
remaining bit must be derived in an alternative manner.

The second observation is that when two n-bit operands
suppose S and C that follow the weighted representation
are used as inputs to a diminished-1 modulo 2n

þ 1 adder,
its output will be equal to jSþ Cþ 1j2nþ1. This observation
leads us to the conclusion that for using an inverted EAC
parallel adder, part of the correction factor should be
assigned to the final adder, whereas the rest is treated as a
partial product. We therefore rewrite (4) as

R ¼ jA� Bj2nþ1 ¼
Xn�1

i¼0

PPi þ 3

�����
�����
2nþ1

¼
Xn�1

i¼0

PPi þ 2

�����
�����
2nþ1

þ1

�����
�����
2nþ1

ð5Þ

Let S ¼ sn21sn22 � � � s0 and C ¼ cn22cn21 � � � c0cn21 denote
the sum and carry n-bit vectors that are produced by the
multi-operand addition j

P
i¼0
n21 PPiþ 2j2nþ1, that is

Sþ C ¼ j
P

i¼0
n21 PPiþ 2j2nþ1. Substituting this in (5),

results in

R ¼ jA� Bj2nþ1 ¼ jSþ Cþ 1j2nþ1 ð6Þ

We can now observe that the most significant bit of the
multiplication, is 1 only when R ¼ 2n. From (6) we get
that R ¼ 2n , ¼ . jSþ Cþ 1j2nþ1 ¼ 2n. Taking into
account that S and C are n-bit vectors, we then get
that R ¼ 2n , ¼ . Sþ Cþ 1 ¼ 2n or equivalently that
Sþ C ¼ 2n 2 1. That is the most significant bit of the
Table 2: Reduced partial-product matrix

2n21 2n22 2n21
� � � 22 21 20

PP0 ¼ pn21,0 _ qn21 pn22,0 pn23,0 � � � p2,0 p1,0 p0,0 _ qn21 _ pn,n

PP1 ¼ pn22,1 pn23,1 pn24,1 � � � p1,1 p0,1 pn21;1 _ q0

PP2 ¼ pn23,2 pn24,2 pn25,2 � � � p0,2 pn21;2 _ q1 pn22;2

� �

PPn22 ¼ p1,n22 p0,n22 pn21;n22 _ qn23 � � � p4;n22 p3,n22 p2,n22

PPn21 ¼ p0,n21 pn21;n21 _ qn22 pn22;n21 � � � p3;n21 p2;n21 p1;n21
IET Comput. Digit. Tech., Vol. 1, No. 1, January 2007

multiplication is 1 only when S and C are complementary
vectors. As explained later, this observation enables us to
compute the most significant bit distinctly from the rest.
In the following, we focus on the n least significant bits
of R.

Let Rn denote the n-bit vector of the least significant bits
of R. We then have that

Rn ¼ jjA� Bj2nþ1j2n ¼ jjSþ Cþ 1j2nþ1j2n

¼
jSþ Cþ 1� ð2n

þ 1Þj2n; if Sþ Cþ 1 � 2n
þ 1

jSþ Cþ 1j2n ; otherwise

�

¼
jSþ C� 2n

j2n ; if Sþ C � 2n

jSþ Cþ 1j2n ; otherwise

�

¼
jSþ Cj2n ; if Sþ C � 2n

jjSþ Cj2n þ 1j2n; otherwise

�
ð7Þ

The latter relation reveals that the n least significant bits of
the product can be handled by an n-bit adder that increases
the binary sum of its inputs by one when the carry output is
0 and leaves it unchanged in the case of a carry output. This
is exactly the function performed by an inverted EAC par-
allel adder. We therefore conclude that, if a total correction
factor of 2 is used as an extra partial product, an inverted
EAC parallel adder used as the final adder will accept S
and C at its inputs and will provide Rn.

Very fast inverted EAC adders based on parallel prefix
carry computation units have appeared in the works of
Zimmerman [14] and Vergos et al. [15]. For integer
adders, a parallel prefix carry computation unit is derived
from the following. Let A ¼ an21an22 � � � a1a0 and
B ¼ bn21bn22 � � � b1b0 denote the two n-bit addition oper-
ands and let the terms gi ¼ ai ^ bi and pi ¼ ai � bi denote
the carry generate and propagate terms at bit position i,
respectively. By defining W as an operator that associates
generate and propagate pairs and produces a new pair
according to the equation

ðgx; pxÞ 8 ðgy; pyÞ ¼ ðgx _ px ^ gx; px ^ pyÞ

the computation of a carry ci of the integer addition of A and
B is equivalent to computing Gi under the prefix equation

ðGi;PiÞ ¼ ðgi; piÞ 8 ðgi�1; pi�1Þ 8 � � � 8 ðg1; p1Þ 8 ðg0; p0Þ

Once the carries have been computed, the sum bits, si, are
computed by si ¼ pi � ci21.

For attaining an inverted EAC adder, simple solutions,
such as the connection of the carry output of an integer
adder back to the carry input via an inverter, are not
well-suited, since they suffer from oscillations. In the
work of Zimmerman [14], it was proposed that the
output carry is driven back via an inverter to a late carry
increment stage composed of nodes implementing a prefix
operator. Therefore no oscillations occur and if the carry
computation unit is designed according to the fast algor-
ithms presented in the works of Kogge and Stone [29] and
Ladner and Fisher [30], the derived inverted EAC adders
feature an operating speed close to the corresponding
integer adders.

The need for an extra prefix stage that handles the
re-entering carry has been cancelled in the parallel-prefix
inverted EAC adders proposed in the work of Vergos
et al. [15]. This was achieved by performing carry
re-circulation at each existing prefix level. As a result,
parallel-prefix adder architectures with log2 n have been
derived, that is inverted EAC adders that can achieve the
same operating speed as the corresponding integer adders.
IET Comput. Digit. Tech., Vol. 1, No. 1, January 2007
For the sake of completeness, we revisit some of the the-
ories developed in the work of Vergos et al. [15] in the
following.

The inverted EAC adder carry, suppose c�i, is equal to G�i,
where G�i is computed according to the parallel prefix
equations

ðG�i ;P�i Þ ¼

ðGn�1;Pn�1Þ;

if i ¼ �1

ðGi;PiÞ 8 ðGn�1;iþ1;Pn�1;iþ1Þ;

if 0 � i � ðn� 2Þ

8>>><
>>>:

ð8Þ

and

† ðG;PÞ ¼ (Ḡ, P)
† Ga,b and Pa,b, with a . b, are, respectively, the group
generate and propagate signals for the group a, a 2 1,
a 2 2, . . . , bþ 1, b, computed by (Ga,b, Pa,b) ¼
(ga, pa) W (ga21, pa21) W � � � W (gb, pb).

In the cases that the equations indicated by (8) require
more than log2 n prefix levels for their implementation,
we can transform them into equivalent ones by introducing
ti, ti ¼ ai _ bi, and taking into account that if (Gx, Px) ¼
(g, p) 8 ðG;PÞ and (Gy, Py) ¼ ðð�t; �gÞ W ðG;PÞÞ then Gx ¼ Gy

[15]. This enables us to equivalently compute a carry
whose equation is given by a prefix equation of the form
(g, p) W ðG;PÞ as ðð�t; �gÞ W ðG;PÞÞ. For area–time efficient
designs, this transformation should be applied j times recur-
sively to the equations of the form (gi, pi) W (gi21,
pi21) W � � � W (g1, p1) W ðGn;iþ1;Pn;iþ1Þ given by (8), until

n� 1� iþ j ¼
n; if i .

n

2
� 1

n

2
; if i �

n

2
� 1

8<
:

Since S and C are the inputs of the final adder and
Pn21 ¼ pn21 ^ pn22 ^ � � � ^ p0, we conclude that the
most significant bit of the result which should be 1 only
in the case that S and C are complementary vectors is
equal to the group propagate signal out of the n bits of the
final inverted EAC adder.

2.4 An example of the proposed architecture

Table 3 lists the required partial products in a modulo 17
multiplier that follows the proposed architecture. The last
partial-product represents the total correction factor when
an inverted EAC adder is used as the final adder.

Fig. 3 presents a block diagram of the proposed modulo 17
multiplier. The simple gates required for the formation of the
partial-product bits are not shown. The blocks used are half-
adders (HA), FAs and simplified FA blocks (FAþ), that is
FAs with one of their inputs set at 1 and the final adder.
The output carries at the most significant bit of each stage
are complemented and driven to the least significant bit of
the subsequent stage. The two final derived summands are
added in the final parallel adder.

It should be noted that the partial-product bits of equal
weight are not driven randomly in the FAs of the corre-
sponding column. For achieving the least delay, the partial-
product bits derived earlier should be driven to the FAs at
the top levels of the CSA tree, whereas late arriving
signals to FAs of subsequent tree levels. For example the
FAs of the rightmost column in Fig. 3, perform the addition
of 0, p1;3, p2;2, p3;1 _ q0 and p4,4 _ p0,0 _ q3 along with the
inverted carries that overflow at the leftmost column. The
53

54
Table 3: Partial-product matrix in modulo 17 multiplication

23 22 21 20

PP0 ¼ p3,0 _ p3,4 _ p4,3 p2,0 p1,0 p0,0 _ p4,4 _ p4,3 _ p3,4

PP1 ¼ p2,1 p1,1 p0,1 p3,1 _ p0,4 _ p4,0

PP2 ¼ p1,2 p0,2 p3;2 _ p1;4 _ p4;1 p2;2

PP3 ¼ p0,3 p3;3 _ p2;4 _ p4;2 p2;3 p1;3

PP4 ¼ 0 0 1 0
addition of 0 cannot be avoided, since doing so alters
the number of inverted EACs in the CSA tree and invali-
dates all the previous analysis. However, the FAs accepting
the bits from the constant partial product can be simplified
to HA or FAþ. Since it is expected that the signals p3;1
and p2;2 would be the ones computed earlier, these along
with the 0 operand should be examined as candidates for
the first addition stage.

The final adder required in this case is shown in Fig. 4.
The parallel-prefix carry computation unit of the adder com-
putes the carries according to the following equations

c��1 ¼ ðg3; p3Þ 8 ðg2; p2Þ 8 ðg1; p1Þ 8 ðg0; p0Þ

c�0 ¼ ðt0; g0Þ 8 ðg3; p3Þ 8 ðg2; p2Þ 8 ðg1; p1Þ

c�1 ¼ ðg1; p1Þ 8 ðg0; p0Þ 8 ððg3; p3Þ 8 ðg2; p2ÞÞ

c�2 ¼ ðg2; p2Þ 8 ðg1; p1Þ 8 ððt0; g0Þ 8 ðg3; p3ÞÞ

From Fig. 3, it is evident that the proposed multipliers have
a regular structure that is well suited for VLSI
implementation.

3 Area – delay analysis and comparisons

In this section, we analyse the area and time complexity of
the proposed multipliers. We also compare them with the
multipliers proposed in the work of Efstathiou et al. [24],
which according to the discussion in the introductory
section are the most efficient in both area and delay terms.

For our qualitative comparisons, we use the unit-gate
model proposed in the work of Tyagi [31]. This model con-
siders that all 2-input monotonic gates count as one gate-

Fig. 3 Proposed architecture of a modulo 17 multiplier
equivalent for both area and delay, whereas a 2-input
XOR/XNOR gate counts as two equivalents.

The area requirements of the proposed multipliers consist
of the partial-product-bit formation gates, the CSA tree and
the final adder. Considering that (nþ 1)2 AND (or NAND)
gates are required for the formation of the pi,j (or pi;j) terms,
2(n 2 1) OR (or NOR) gates are required for the pi;j _ qi

terms, and four more OR gates are required for the two
more complex product bits in PP0, we can compute that
the area required for the formation of partial-product bits is

Apartial ¼ ðnþ 1Þ2 þ 2ðn� 1Þ þ 4 ¼ n
2
þ 4nþ 3 ð9Þ

gate equivalents. The CSA tree that performs the reduction
of the partial products in two final summands is composed
of (n 2 1) rows of n FAs each. However, since one of
these rows accepts the constant correction factor, its n
FAs can be simplified to n 2 1 HAs and one FAþ.
Considering that an FA, an HA and an FAþ have an area
of 7, 3 and 3 gate equivalents, respectively, we get that
the area required for the partial-product reduction is

ACSA ¼ 7nðn� 2Þ þ 3ðn� 1Þ þ 3 ¼ 7n2
� 11n ð10Þ

gate equivalents. The area of the last stage adder was
computed in the work of Vergos et al. [15] as

Aadder ¼
9

2
ndlog ne þ

1

2
nþ 6 ð11Þ

Summing the area requirements of (9)–(11), we can get that
the proposed multipliers have an area of

Aproposed ¼ 8n2
þ

9

2
ndlog ne �

13

2
nþ 9

equivalent gates, whereas the area of the multipliers pro-
posed in the work of Efstathiou et al. [24] was

A½24� ¼ 8n
2
þ

9

2
ndlog ne þ

1

2
nþ 4

Fig. 4 Final adder of the proposed modulo 17 multiplier
IET Comput. Digit. Tech., Vol. 1, No. 1, January 2007

equivalent gates. We therefore conclude that the proposed
architecture leads to more compact designs. Table 4
lists for various operand sizes the savings in area
offered by the proposed multipliers. Over the examined
range, an average saving of 5.5% in the required area is
observed.

The delay of the proposed multipliers also consists of
three parts, namely, the delay of the partial-product
formation, the delay of the CSA tree and the delay of
the parallel inverted EAC adder. Since, the pi,j and (pi;j)
terms are computed in 1 time unit and all the remaining
partial-product terms in 3 time units, the upper bound of
the delay for forming the partial-product matrix is 3 time
units. However, as explained previously, in several cases
we can parallelise some of this delay with that of the
first stage of the CSA tree by driving the late-arriving
partial-product bits to the FAs of subsequent stages.
Hiding the delay of the late computed partial-product bits
is not possible, however, if for an optimum adder tree
depth, all partial-product bits are required in the first level
of the tree. This is the case, when nþ 1 is a number of
the Dadda sequence (6, 9, 13, 19, 28, 42, 63, . . .).
Therefore the delay for the partial-product formation is
modelled as

Tpartial ¼
3; if nþ 1 is a number of the Dadda sequence

1; otherwise

�
ð12Þ

time units. The delay of a CSA tree designed according to
Dadda [28] can be modelled as

TCSA ¼ 4Dðnþ 1Þ ð13Þ

where D(k) denotes the depth in FAs of a k-operand CSA
tree, available in Table 5.1 in the work of Koren [32]. In
the special case of n ¼ 4, since the first stage of the tree
can be constructed using only HAs and FAþ, we have that
TCSA ¼ 10. The delay of the parallel-prefix inverted EAC
adder is [15]

Tadder ¼ 2dlog ne þ 3 ð14Þ

Summing the delays of (12)–(14), we conclude that the
delay of the proposed multipliers can be modelled as

Tproposed¼

18; if n¼4

4Dðnþ1Þþ2dlog neþ6; if nþ1is a number of the Dadda sequence

4Dðnþ1Þþ2dlog neþ4; otherwise.

8><
>:
time units. The multipliers proposed in the work of Efstathiou et al.

[24] exhibit a delay of

T ½24� ¼

4Dðnþ 3Þ þ 2dlog ne þ 2;

if nþ 1 or nþ 2 is a number of the

Dadda sequence

4Dðnþ 3Þ þ 2dlog ne þ 4;

otherwise

8>>>>>><
>>>>>>:
IET Comput. Digit. Tech., Vol. 1, No. 1, January 2007
Table 5 lists for various operand sizes the delays offered by
the proposed architecture and the architecture of Efstathiou
et al. [24]. Form Table 5, it is obvious that in most cases,
the two architectures offer similar execution delay.

We should however remember that the proposed multi-
pliers offer handling of zero operands and results which is
not offered by Efstathiou et al. [24]. Fig. 5a presents the
extra circuits required by the proposal in the work of
Efstathiou et al. [24] for handling zero operands and
results. We consider that X� ¼ xn21xn22 � � � x0 represents
the diminished-1 representation of X and that xz is a zero
indication bit. A zero value is indicated by xz ¼ 1 and
X� ¼ 00. . .0. It is obvious that both the area and delay
requirements of the multipliers proposed in the work of
Efstathiou et al. [24] increase further when zero operands
and results are considered. Moreover, since the proposed
multipliers operate on operands with weighted represen-
tation they do not require any input/output translators in
contrast to the architecture of Efstathiou et al. [24].
Fig. 5b and 5c present, respectively, the circuits required
for translating from/to the weighted representation to/
from the diminished-1. Although these circuits are only
used at the start or the end of a computation cycle, their
area and delay complexity should also be accounted for,
when deciding on using a weighted or a diminished-1
representation.

Since the unit-gate model does not take into account the
interconnect complexity, as well as, fan-in and fan-out
requirements of the compared designs, we used a cell-based
design approach to verify the qualitative comparisons. Each
multiplier was described in HDL and mapped in a 0.18 mm
CMOS standard cell library by a synthesis tool. After the
initial mapping, we instructed the tool to perform iterative
steps of delay optimisation on every design, until the
fastest possible design was reached. Recursive area recov-
ery steps were then applied. The derived netlists and the
associated constraints were then passed to a standard cell
place and route tool. All design constraints such as output
load, max fan-out and floorplan initialisation were kept con-
stant for each comparison. After annotating our netlists with
the back-end information, static timing analysis was per-
formed. The attained results are listed in Table 6. The
reported area results include both cell and interconnect
area and are given in mm2. Delay results are reported in
nanoseconds. On the average of the examined cases, the
proposed architecture leads to 9.7% more compact and in
parallel 6.7% faster multipliers.

4 Conclusions

A novel architecture for modulo 2n
þ 1 multiplier design is

proposed in this paper. The proposed architecture improves

Table 5: Delay comparisons

n 4 8 12 16 20 24 28 32

Tproposed 18 28 34 36 42 42 46 46

T[24] 22 28 34 36 42 42 46 46
Table 4: Area comparisons

n 4 8 12 16 20 24 28 32

Aproposed 147 577 1299 2241 3529 5001 6729 8713

A [24] 170 628 1378 2348 3664 5164 6920 8932

Savings (%) 13.5 8.1 5.7 4.6 3.7 3.2 2.8 2.5
55

greatly the one proposed in the work of Wrzyszcz and
Milford [20] by combining all corrections into a single
one, thereby decreasing the required parallel additions
from 3 to 1. Even higher speed is attained by treating part
of the required correction as a partial product whereas the
rest is handled by the last stage adder. Our comparisons
with the most efficient in delay and area terms solution indi-
cate that the proposed multipliers offer the same or even
better speed while being more compact. Considering more-
over, that the proposed multipliers accept operands in
weighted form whereas the solution presented in the work
of Efstathiou et al. [24] operands in diminished-1 represen-
tation, it is clear that the proposed multipliers can be used
more efficiently, since they do not require time-and
hardware-consuming input and output translators nor any
overhead circuit for handling of zero operands and results.

Fig. 5 Overhead circuits required in the diminished-1 multi-
pliers of Efstathiou et al. [24]

a Circuit required for handling zero operands and results
b Input translator
c Output translator

Table 6: Area and delay results from cell-based
implementations

Multipliers of

Efstathiou et al. [24]

Proposed multipliers

n Area Delay Area Delay

4 3 724 1.34 3 206 1.09

8 9 685 1.98 8 819 1.96

16 36 541 2.65 34 252 2.61

32 118 552 3.63 111 547 3.58
56
5 Acknowledgment

The research presented in this work was conducted
within the framework of the Educational and Initial
Vocational Training Program ‘Archimedes’ which is
co-funded by the E.U. (75%) and by the Greek government
(25%).

6 References

1 Taylor, F.: ‘A single modulus ALU for signal processing’, IEEE
Trans. Acoust. Speech Signal Process., 1985, 33, pp. 1302–1315

2 Bayoumi, M., Jullien, G.A., and Miller, W.C.: ‘A look-up table VLSI
design methodology for RNS structures used in DSP applications’,
IEEE Trans. Circuits Syst. II, 1987, CAS-34, pp. 604–616

3 DiClaudio, E., Piazza, F., and Orlandi, G.: ‘Fast combinatorial RNS
processors for DSP applications’, IEEE Trans. Comput., 1995, 44,
pp. 624–633

4 Keller, T., Liew, T.H., and Lajos, H.: ‘Adaptive redundant residue
number system coded multicarrier modulation’, IEEE J. Selected
Areas Commun., 2000, C-18, (11), pp. 2292–2301

5 Ramirez, J., Garcia, A., Lopez-Buendo, S., and Lloris, A.:
‘RNS-enabled digital signal processor design’, Electron. Lett., 2002,
38, (6), pp. 266–268

6 Ramirez, J. and Meyer-Baese, U.: ‘High performance, reduced
complexity programmable RNS–FPL merged FIR filters’, Electron.
Lett., 2002, 38, (4), pp. 199–200

7 Leibowitz, LM.: ‘A simplified binary arithmetic for the Fermat
number transform’, IEEE Trans. Acoust. Speech Signal Process.,
1976, 24, pp. 356–359

8 Truong, T.K., Chang, J.J., Hsu, I.S., Pei, D.Y., and Reed, I.S:
‘Techniques for computing the discrete Fourier transform using the
quadratic residue Fermat number systems’, IEEE Trans. Comput.,
1986, C-35, pp. 1008–1012

9 Benaissa, M., Bouridane, A., Dlay, S.S., and Holt, A.G.J.:
‘Diminished-1 multiplier for a fast convolver and correlator using
the Fermat number transform’, IEE Proc. G, 1988, 135, pp. 187–193

10 Sunder, S., El-Guibaly, F., and Antoniou, A.: ‘Area-efficient
diminished-1 multiplier for Fermat number-theoretic transform’, IEE
Proc. G, 1993, 140, pp. 211–215

11 Zimmermann, R., Curiger, A., Bonnenberg, H., Kaeslin, H., Felber,
N., and Fichtner, W.: ‘A 177 Mb/s VLSI implementation of the
international data encryption algorithm’, IEEE J. Solid-State
Circuits, 1994, 29, (3), pp. 303–307

12 Ramirez, J., Garcia, A., Meyer-Baese, U., and Lloris, A.: ‘Fast RNS
FPL-based communications receiver design and implementation’.
Proc. 12th Int. Conf. Field Programmable Logic, Lecture Notes in
Computer Science, 2002, (Springer-Verlag), vol. 2438, pp. 472–481

13 Cardarilli, G.C., Nannarelli, A., and Re, M.: ‘Reducing power
dissipation in FIR filters using the residue number system’. Proc. 43rd
IEEE Midwest Symposium on Circuits and Systems, 2000, pp. 320–323

14 Zimmerman, R.: ‘Efficient VLSI implementation of modulo (2n + 1)
addition and multiplication’. Proc. 14th IEEE Symposium on
Computer Arithmetic, 1999, pp. 158–167

15 Vergos, H.T., Efstathiou, C., and Nikolos, D.: ‘Diminished-one
modulo 2n

þ 1 adder design’, IEEE Trans. Comput., 2002, 51,
pp. 1389–1399

16 Efstathiou, C., Vergos, H.T., and Nikolos, D.: ‘Fast parallel-prefix
modulo 2n

þ 1 adders’, IEEE Trans. Comput., 2004, 53, pp. 1211–1216
17 Piestrak, S.J.: ‘Design of residue generators and multioperand

modular adders using carry-save adders’, IEEE Trans. Comput.,
1994, 43, pp. 68–77

18 Vergos, H.T., and Efstathiou, C.: ‘Diminished-1 modulo 2n
þ 1

squarer design’, IEE Proc. – Comput. Digit. Tech., 2005, 152,
pp. 561–566

19 Hiasat, A.A.: ‘A memoryless mod(2n + 1) residue multiplier’,
Electron. Lett., 1992, 28, (3), pp. 314–315

20 Wrzyszcz, A., and Milford, D.: ‘A new modulo 2a
þ 1 multiplier’.

Proc. Int. Conf. Computer Design (ICCD’93), 1995, pp. 614–617
21 Wang, Z., Jullien, G.A., and Miller, W.C.: ‘An efficient tree

architecture for modulo 2n
þ 1 multiplication’, J. VLSI Signal

Process., 1996, 14, pp. 241–248
22 Ma, Y.: ‘A simplified architecture for modulo (2n

þ 1) multiplication’,
IEEE Trans. Comput., 1998, 47, (3), pp. 333– 337

23 Curiger, A.: ‘VLSI architectures for computations in finite rings and
fields’. Swiss Federal Institute of Technology, 1993

24 Efstathiou, C., Vergos, H.T., Dimitrakopoulos, G., and Nikolos, D.:
‘Efficient diminished-1 modulo 2n

þ 1 multipliers’, IEEE Trans.
Comput., 2005, 54, pp. 491–496
IET Comput. Digit. Tech., Vol. 1, No. 1, January 2007

25 Sousa, L., and Chaves, R.: ‘A universal architecture for designing
efficient modulo 2n

þ 1 multipliers’, IEEE Trans. Circuits Syst. I.,
2005, 52, pp. 1166–1178

26 Chaves, R., and Sousa, L.: ‘Faster modulo 2n
þ 1 multipliers without

booth recoding’. Proc. XX Conf. Design of Circuits and Integrated
Systems (DCIS’05), 2005

27 Wallace, C.S.: ‘A suggestion for a fast multiplier’, IEEE Trans.
Electron. Comput., 1964, EC-13, pp. 14–17

28 Dadda, L.: ‘On parallel digital multipliers’, Alta Frequenza, 1976, 45,
pp. 574–580
IET Comput. Digit. Tech., Vol. 1, No. 1, January 2007
29 Kogge, P.M., and Stone, H.S.: ‘A parallel algorithm for the efficient
solution of a general class of recurrence equations’, IEEE Trans.
Comput., 1973, C-22, pp. 786–792

30 Ladner, R.E., and Fisher, M.J.: ‘Parallel prefix computation’, J. ACM,
1980, 27, (4), pp. 831–838

31 Tyagi, A.: ‘A reduced-area scheme for carry-select adders’, IEEE
Trans. Comput., 1993, 42, (10), pp. 1163–1170

32 Koren, I.: ‘Computer arithmetic algorithms’ (A.K. Peters, Natick,
2002, 2nd Edn.)
57

	1 Introduction
	2 Proposed architecture
	3 Area - delay analysis and comparisons
	4 Conclusions
	5 Acknowledgment
	6 References

