
Journal of Circuits, Systems, and Computersfc World Scientific Publishing Company

ON THE DESIGN OF EFFICIENT MODULAR ADDERS

HARIDIMOS T. VERGOS

Computer Engineering and Informatics Department,
University of Patras, 26 500, Greece

and

CONSTANTINOS EFSTATHIOU

Informatics Department,
TEI of Athens, 12 210, Greece

Received (received date)
Revised (revised date)

Accepted (accepted date)

Modular adders are met in various applications of computer systems. In this paper we
investigate a new architecture for their design that utilizes a carry save adder stage and
two binary adders that operate in parallel. Realizations in static CMOS reveal that the
introduced architecture leads to modular adder implementations that offer significant
savings in delay and power consumption over implementations based on previously
proposed architectures. In parallel, the proposed architecture offers significantly smaller
implementation area for small operand widths.

1. Introduction

Modular adders play an important role in pseudorandom number generation 1 and
cryptographic implementations 2,3,4. Their main application field however, is in
residue number system (RNS) based computations. The RNS has been proposed
as an alternative to the binary number system because it does not suffer from the
carry propagation problem since the operations are carried out on the residue digits
concurrently in independent units. Furthermore, the RNS exhibits attractive fault
tolerant capabilities 5. The use of RNS has been adopted in several digital signal
processing applications 6,7,8,9,10,11. Finally, modular adders are essential building
blocks for modular multipliers 12,13, residue to binary converters 14,15 and other
modular operations 16,17.

Although several architectures have appeared which attack the problem of
designing adders for specific moduli, for example modulo 2n− 1 adders 18 or 2n +1
adders 19, few are available in the literature on the design of generalized modular
adders. The latter architectures can be divided in two categories :

• those that require the use of ROM and
• those that are based on the use of binary adders.

1

2 On the Design of Efficient Modular Adders

Since the proposals of the latter category lead to area-time efficient implementations
even for large moduli, they have received significantly more attention than those of
the first category and are therefore the focus of this manuscript.

For the modulo m addition of X and Y , hereafter denoted by |X + Y |m, where
X = xn−1xn−2 · · ·x1x0 and Y = yn−1yn−2 · · · y1y0 are two n-bit binary numbers in
the range [0,m) and n = dlog2 me, we have that

|X + Y |m =

{
X + Y −m, if X + Y ≥ m

X + Y, otherwise.
(1)

Based on Eq. 1 Bayoumi and Jullien 20, presented an architecture for modular
addition that utilizes two adders and a multiplexer. A n-bit adder is used to compute
X +Y , while a −m correction is added to its output by the second (n+1)-bit adder.
The multiplexer is then used to select between the two adders’ outputs depending
on the value of the carry output of the second adder.

Dugdale 21 has reduced the width of the second adder to n bits and has shown
that the multiplexers can be controlled by the logical OR of the two adder’s carry
outputs. She has also presented an area efficient architecture that performs the
modular addition using just one adder in two addition cycles.

The most efficient purely combinational architecture for single cycle modular
addition has been recently proposed by Hiasat 22. This architecture is based on
generating propagate (p) and generate (g) signals for both the X + Y and the
X + Y −m cases. The output of a carry look-ahead (CLA) unit is used to select
the required set of p and g signals which are then propagated to a second CLA unit
that produces the carries of the modulo addition. As shown experimentally 22, this
architecture outperforms the earlier solutions 20,21 in both area and time. However,
one must note that both the area and the delay of the adders proposed by Hiasat 22

depend heavily on the form of m. In the special case that m = 2n +1, multiplexing
of the p and g signals is not required, and therefore very efficient adders can be
derived.

In this manuscript, we investigate a modular adder architecture that consists of
a carry save adder (CSA) stage and two binary adders that operate in parallel. The
first binary adder computes X + Y , whereas the CSA and the second binary adder
computes X + Y − m. Selection between the two results is performed by a final
row of multiplexers. The use of two binary adders in parallel has been previously
employed for speeding-up the last stage of a residue to binary converter 14. This
solution however has not been investigated as a candidate for a modular adder.
Moreover, the scheme used in the residue to binary converter 14 can not be applied
directly in the case of completely independent operands, as is the case of modular
adders. Using CMOS implementations we show that when m 6= 2n + 1, the adders
designed following the presented architecture are on the average about 26% faster
and consume about 19% less power. For small operand widths, the proposed adders

On the Design of Efficient Modular Adders 3

also require about 21% less implementation area than those proposed by Hiasat 22.

2. Modular Adder Architecture

Let M denote the 2’s complement of m, that is M = 2n−m. Then, for the modulo
m addition of X and Y , we have :

|X + Y |m =

{
X + Y −m, if X + Y ≥ m

X + Y, otherwise.

=

{
X + Y + 2n −m− 2n, if X + Y + 2n −m ≥ 2n

X + Y, otherwise.

=

{
|X + Y + M |2n , if X + Y + M ≥ 2n

X + Y, otherwise.
(2)

Adder A

Adder B

X Y

X
M

(2n-m)Y

n 2->1 Multiplexers

R

Output with
weight 2n

Fig. 1. Block diagram of the proposed modular adder architecture.

According to Eq. 2, a modular adder can be implemented as shown in Fig. 1.
Adder A performs the addition X + Y , while Adder B the addition X + Y + M .
The output of Adder B with weight 2n indicates whether X + Y + M ≥ 2n, and as
Eq. 2 indicates it can be used for controlling the multiplexers that select the correct
output between the two addition results.

In the following we detail the implementation of Adder B. This three operand
adder can be implemented as a CSA stage and an Adder D. The purpose of the
CSA stage is to reduce the three operands of adder B into a sum, S, and a carry,
C, vector, both of length n, which are subsequently added by Adder D. At each
bit position, the CSA stage requires either a half-adder (HA) or a half-adder-like
(HA*) cell 22, when the value of the corresponding bit of M , is 0 or 1 respectively.

4 On the Design of Efficient Modular Adders

Example 1: Consider the modulo 19 addition of X = x4x3x2x1x0 and
Y = y4y3y2y1y0. In this case n = 5, M = 13 = 011012. Therefore the CSA is
composed of 5 cells according to Fig. 2.

 HA Cell

x4y4

c4

s4

 HA* Cell

x3y3

c3

s3

 HA* Cell

x2y2

c2

s2

Carry Vector C =

Sum Vector S =

 HA Cell

x1y1

c1

s1

 HA* Cell

x0y0

c0

s0

Fig. 2. CSA for the modulo 19 adder.

¤

Adder B

HA or
HA*

HA or
HA*

HA or
HA*

HA or
HA*

y0y1 x1yn-2 xn-2yn-1xn-1

s0s1

c0c1

sn-1

cn-2

sn-2

cn-1

CSA

Adder A

yn-1xn-1 yn-2xn-2 y1 x1 y0 x0

R

(n-1)-bit binary adder

x0

Adder D

cout

n 2->1 Multiplexers
0 1

Fig. 3. Detailed implementation of the modular adder architecture.

Note that Adder D operates on the bits of the vectors S = sn−1sn−2 · · · s1s0

and C = cn−1cn−2 · · · c1c0 that have equal weight, that is, bit c0 is added to s1, c1

to s2 and so forth. We may consider this adder as being decomposed into an (n−1)
adder and an XOR gate as Fig. 3 suggests.

We can then notice that cn−1 and cout signals of Fig. 3, can not be both at 1.
cn−1 is at 1, when both xn−1 and yn−1 are at 1. The (n− 1)-bit adder in this case

On the Design of Efficient Modular Adders 5

computes (X − 2n−1) + (Y − 2n−1) + M − s0 = X + Y −m− s0. Since X,Y < m,
X + Y − m − s0 < m < 2n and therefore cout = 0. The fact that cn−1 and cout

can not be simultaneously at 1 implies that, the XOR gate of Fig. 3 never receives
both inputs at 1 and can therefore be equivalently substituted by an OR gate.

3. Comparisons

In this section, we compare the architecture of Fig. 3, against the one proposed by
Hiasat 22, which has been shown to be more area and time effective than earlier
solutions 20,21.

Considering the delay, the proposed architecture’s speed is determined by the
delay of a (n− 1)-bit binary adder plus the delay of a XOR gate and a multiplexer.
Hiasat’s architecture apart from the above delays also imposes the delay of a carry
look ahead unit of a (n− 1)-bit adder.

Considering the implementation area, the architecture of Hiasat requires :

(a) a CSA similar to the proposed architecture,
(b) one full binary adder,
(c) the part of a second carry computation unit that produces the carry

output. One may note that this is the most area consuming part of the
carry computation unit, and

(d) multiplexers to choose the correct propagate and generate signals.
Depending on the value of m, the required multiplexers may reach
the value of 2(n− 1).

On the other hand the proposed architectures’ area requirements are :

(a) the CSA,
(b) two full binary adders, and
(c) n multiplexers.

One however should also take into account that :

• for the bits of M that are zero, the resulting bits of S and C vectors
are also the p and g bits required for adder A, and

• for the rest bits of M the resulting S bits are the complement of the p

bits required for adder A.

We therefore expect that for small values of n, the area required by the proposed
architecture will be significantly smaller than that of the architecture proposed by
Hiasat, while for large values of n both architectures will require similar area.

To verify the above rough comparisons, we modelled several modular adders in
HDL. In all cases, we assumed a Ladner-Fischer 23 parallel-prefix implementation
of the carry computation units. The descriptions were then mapped in the UMC-
VST 25 implementation technology (0.25 µm, up to 5-metal layers, 1.8 / 3.3 V).
We followed two different optimization approaches.

6 On the Design of Efficient Modular Adders

In the first one, each mapped design was recursively optimized for speed. A
final step of area recovery followed. This approach leads to the fastest attained
designs using each architecture. The results obtained using this approach are given
in Table I. In all examined cases the adders designed according to the presented
architecture outperform the ones proposed by Hiasat 22. The delay savings achieved
range from 17.93% up to 36.07% with an average value of 26.11%.

Table I. Time optimization results.

Modulus Hiasat’s Architecture Proposed Architecture Time Savings
m Time(ns) Area (µm2) Time(ns) Area (µm2) (%)
29 1.45 6226 1.19 5695 17.9
41 1.69 8967 1.36 7310 19.5
97 1.94 9672 1.39 7462 28.4
211 1.92 10773 1.37 11994 28.6
453 2.19 11563 1.40 12894 36.1

Table II. Area optimization results.

Modulus Target Delay Hiasat’s Architecture Proposed Architecture Area Savings
m (ns) Area (µm2) Area (µm2) (%)
29 1.74 4033 3404 15.6
41 2.03 6345 3561 43.9
97 2.33 6610 4854 26.6
211 2.30 7998 7217 9.8
453 2.63 8686 8046 7.4

In the second approach all mapped designs were optimized until they achieved
a specific operating frequency. This frequency was set at 0.8 of the maximum
frequency reported in Table I for Hiasat’s architecture. Successive area minimization
steps were then applied until the tool was unable to provide a smaller design. The
results obtained using this approach are given in Table II. The implementation area
savings offered by the proposed architecture compared to the one proposed in 22,
range from 7.36% up to 43.87%, with an average value of 20.6%.

Table III. Power consumption results.

Modulus Hiasat’s Architecture Proposed Architecture Power Savings
m Power (mW) Power (mW) (%)
29 1.066 0.932 12.6
41 1.466 0.887 39.5
97 1.368 1.096 19.9
211 1.699 1.502 11.6
453 1.781 1.599 10.2

Since power reduction is an important target in battery operated systems, we
also performed power consumption comparisons. For them, we used the netlists of

On the Design of Efficient Modular Adders 7

Table II. All designs were placed and routed using keeping the design constraints,
such as output load, max fanout, and floorplan initialization information constant
for both compared architectures. Then the parasitics were extracted from the actual
layouts of the designs. The gathered design data for each design were then passed to
our power analysis tool which estimated the average power required per vector over
5000 random vectors applied. Our experimental results on power consumption are
shown in Table III. The results indicate that the savings offered by the proposed
architecture compared to the one proposed by Hiasat, range from 10.2% up to
39.5%, with an average value of 18.8%.

4. Conclusions

Residue-based applications, such as RNS implementations for digital signal
processing, cryptography and pseudorandom number generation make the use of
high-speed combinational modular adders imperative. Moreover, modular adders
are essential elements of modular multipliers and residue to binary converters. To
this end, a new modular adder architecture has been presented. The proposed
architecture is built upon a CSA and two binary adders, operating in parallel. The
experimental results indicate that the proposed adders offer significant savings in
operation delay and power consumption. In parallel, for small operand widths they
provide more compact designs.

Acknowledgements

This work was co-founded by 75% from E.C. and by 25% from the Greek
Government under the framework of the Education and Initial Vocational Training
Program - Archimedes II

References

1. D. H. Lehmer, Proc. of the 2nd Symp. on Large-Scale Digital Calculating
Machinery, Cambridge, MA, Harvard University Press, (1951), pp. 141–146.

2. R. Zimmermann, A. Curiger, H. Bonnenberg, H.Kaeslin, N. Felber, and W. Fichtner,
“A 177 Mb/s VLSI implementation of the international data encryption algorithm”,
IEEE J. of Solid-State Circuits, 29, (1994), 303–307.

3. A. Curiger, “VLSI architectures for computations in finite rings and fields”, Ph.D.
thesis, Swiss Federal Institute of Technology, 1993.

4. X. Lai and J. L. Massey, “A proposal for a new block encryption standard”, Proc. of
EUROCRYPT ’90, Lecture Notes in Computer Science, 473, Springer, (1991),
pp. 389-404.

5. B. W. Johnson, Design and Analysis of Fault-Tolerant Digital Systems, Addison-
Wesley, New York, (1989), pp. 119–123.

6. W. K. Jenkins and B. J. Leon, “The use of residue number systems in the design
of finite impulse response digital filters”, IEEE Trans. on Circuits and Systems,
CSA-24, (1977), 191–201.

7. W. K. Jenkins, “Recent advances in residue number techniques for recursive digital
filtering”, IEEE Trans. on Accoustics, Speech and Signal Processing, 27, (1979),

8 On the Design of Efficient Modular Adders

19–30.
8. W. K. Jenkins, “The design of specialized residue classes for efficient recursive digital

filter realization”, IEEE Trans. on Accoustics, Speech and Signal Processing, 30,
(1982), 370–380.

9. M. Soderstrand, M. A. W. Jenkins, G. Jullien and F. Taylor, Residue Number System
Arithmetic : Modern Applications in Digital Signal Processing, IEEE Press, New
York, 1986.

10. K. M. Elleithy and M. A. Bayoumi, “Fast and flexible architectures for RNS arithmetic
decoding”, IEEE Trans. on Circuits and Systems II, 39, (1992), 226–235.

11. E. Di Claudio, F. Piazza and G. Orlandi, “Fast combinatorial RNS processors for DSP
applications”, IEEE Trans. on Computers, 44, (1995), 624–633.

12. K. M. Elleithy and M. A. Bayoumi, “A systolic Architecture for Modulo
Multiplication”, IEEE Trans. on Circuits and Systems II, 42, (1995), 725–729.

13. A. Hiasat, “New efficient structure for a modular multiplier for RNS”, IEEE Trans.
on Computers, 49, (2000), 170–174.

14. S. J. Piestrak, “Design of high-speed residue-to-binary number system converter
based on Chinese remainder theorem”, Proc. of the International Conference on
Computer Design (ICCD), (1994), 508–511.

15. Y. Wang, “Residue to binary converters based on new Chinese remainder theorems”,
IEEE Trans. on Circuits and Systems II, 47, (2000), 197–205.

16. D. Dimauro, S. Impedovo and G. Pirlo, “A new technique for fast number comparison
in residue number system”, IEEE Trans. on Computers, 42, (1993), 608–612.

17. V. Paliouras and T. Stouraitis, “Multifunction architectures for RNS processors”
IEEE Trans. on Circuits and Systems II, 44, (1999), 1041–1054.

18. L. Kalamboukas, D. Nikolos, C. Efstathiou, H. T. Vergos and J. Kalamatianos, “High-
speed parallel-prefix modulo 2n−1 adders”, IEEE Trans. on Computers, 49, (2000),
673–680.

19. H. T. Vergos, C. Efstathiou and D. Nikolos, ”Diminished-one modulo 2n + 1 adder
design”, IEEE Trans. on Computers, 51, (2002), 1389-1399.

20. M. Bayoumi M. and G. Jullien, “A VLSI implementation of residue adders.”, IEEE
Trans. on Circuits and Systems I, 34, (1987), 284–288.

21. M. Dugdale, “VLSI Implementation of residue adders based on binary adders”, IEEE
Trans. on Circuits and Systems II, 39, (1992), 325–329.

22. A. Hiasat, “High-speed and reduced-area modular structures for RNS”, IEEE Trans.
on Computers, 51, (2002) 84–89.

23. R. E. Ladner and M. J. Fischer, “Parallel prefix computation”, J. of the ACM, 27,
(1980), 831–838.

