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Abstract—Modulo 2n þ 1 adders find great applicability in several applications

including RNS implementations and cryptography. In this paper, we present two

novel architectures for designing modulo 2n þ 1 adders, based on parallel-prefix

carry computation units. The first architecture utilizes a fast carry increment stage,

whereas the second is a totally parallel-prefix solution. CMOS implementations

reveal the superiority of the resulting adders against previously reported solutions

in terms of implementation area and execution latency.

Index Terms—Binary adders, modulo 2n þ 1 arithmetic, parallel-prefix adders,

RNS.
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1 INTRODUCTION

SEVERAL applications whose arithmetic operations are limited to
addition, subtraction, and multiplication profit from the use of a
Residue Number System (RNS) [1], [2]. Such applications include
the design of Number Theoretic Transform, Discrete Fourier
Transform, Discrete Cosine Transform, digital filters [2], [3], [4],
[5], [6], [7], and communication components [8], [9].

An RNS is defined by a set of Lmoduli, suppose fd1; d2; . . . ; dLg,
that are pair-wise relative prime. Assume that jXjd denotes the
modulo d of X, that is, the least nonnegative remainder of the
division ofX by d. Then, an integerX has a unique representation in
the RNS, given by the set ðx1; x2; . . . ; xLÞ of residues, where xi ¼
jXjdi if X � 0 and xi ¼ jDþXjdi if X < 0, with D ¼ d1 � d2 � . . .

�dL. An RNS operation � is defined as ðz1; z2; . . . ; zLÞ ¼ ðx1; x2; . . . ;
xLÞ � ðy1; y2; . . . ; yLÞ, where zi ¼ jxi � yijdi . Since the computation of

zi only depends on xi, yi, and di, each zi is computed in parallel in a
separate arithmetic unit, often called channel.

Moduli choices of the form f2n; 2n � 1; 2n þ 1g have received
significant attention because they offer very efficient implementa-
tions in the area� time2 product sense [10]. Addition in such

systems is performed using three channels that, in fact, are a
modulo 2n � 1 (equivalently one’s complement), a modulo 2n, and
a modulo 2n þ 1 adder. Thus, the design of an efficient modulo
2n þ 1 adder is a vital task in RNS-based applications that use a
channel of the 2n þ 1 form.

Modulo 2n þ 1 adders are also utilized as the last stage adder of
modulo 2n þ 1 multipliers. Modulo 2n þ 1 multipliers find great
applicability in pseudorandom number generation, cryptography
[11], [12], [13], and in the Fermat number transform, which is an
effective way to compute convolutions [14].

The addition delay in an RNS application which uses the

f2n; 2n � 1; 2n þ 1g moduli, is determined by the modulo 2n þ 1

channel, since this handles ðnþ 1Þ-bit wide operands. Therefore,
the design of fast modulo 2n þ 1 adders is of great significance. To
overcome the problem of ðnþ 1Þ-bit wide circuits for the modulo
2n þ 1 channel, the diminished-one number system [15] has been

proposed. Efficient adders with operands represented in this
system have appeared in [16], [17], [18], [19]. However, its use rises
new problems. One is the special treatment required for operands
equal to 0. Another one is the requirement for converters from/to
the normal to/from diminished-one representation that increases
the execution latency and the required implementation area.

Modulo 2n þ 1 adders for the normal binary number system can
be derived by considering them as a special case of modulo m

adders. The most efficient solutions for generalized modulo adders
are reported in [20], [21], [22]. The solution proposed in [22] is
based on a Carry Save Adder (CSA) and on the multiplexing of the
carry generate ðgÞ and propagate ðpÞ signals before being driven to
the carry computation unit. The architecture proposed in [22] has
been shown experimentally to outperform the solutions proposed
in [20] and [21] in both area and delay, and will therefore be used
in our comparisons.

In this paper, we derive two novel architectures for modulo
2n þ 1 adders, with operands represented in the normal binary
number system. Both architectures are based on using parallel-
prefix carry computation schemes. The first architecture utilizes a
fast carry increment stage, according to [23]. The second eliminates
the need for this separate carry increment stage by performing
carry recirculation at each prefix level [19], [24]. We will hereafter
refer to these architectures as PPFCI (Parallel-Prefix with Fast
Carry Increment) and TPP (Totally Parallel-Prefix), respectively.
Using implementations in a full static CMOS VLSI technology, we
show that both architectures outperform the previously reported
ones in both execution latency and implementation area.

2 FAST ADDITION BASICS

For speeding up the addition operation, the carry computation
time should be minimized. In the following, we use the notations
^;_;�, and � to denote AND, inclusive-OR, exclusive-OR, and
complement operations, respectively. Assuming the addition of
A ¼ an�1an�2 . . . a0 with B ¼ bn�1bn�2 . . . b0, two terms are com-
monly used for describing the carry computation problem: the
carry generate term, g, and the carry propagate term, p. These
terms are derived for every i, with 0 � i � ðn� 1Þ as gi ¼ ai ^ bi
and pi ¼ ai � bi. The bits of the sum R ¼ rn�1rn�2 . . . r0 are
computed according to ri ¼ pi � ci�1, where c is the carry signal.
The carry at each bit position can be derived according to the well-
known recursive equation ci ¼ gi _ pi ^ ci�1. By unfolding the
latter equation and implementing in parallel the resulting
equations, the well-known carry-look ahead (CLA) adders result.

A special category of CLA adders, well-known as parallel-
prefix adders, results by considering the carry computation in
binary addition as a prefix problem [25]. Carry computation is
transformed into a prefix computation by the introduction of the
associative operator �, defined in [26] as:

ðgm; pmÞ � ðgk; pkÞ ¼ ðgm _ ðpm ^ gkÞ; pm ^ pkÞ: ð1Þ

The carries are given by ci ¼ Gi, where Gi is the first member of
the group relation (assuming that the carry input cin ¼ 0):

ðGi; PiÞ ¼
ðg0; p0Þ; if i ¼ 0
ðgi; piÞ � ðGi�1; Pi�1Þ; if 1 � i � n� 1:

�
ð2Þ

The association of two pairs of ðgx; pxÞ terms using the �
operator is usually represented as a node and a whole carry
computation unit is represented as a tree structured interconnec-
tion of such nodes. Several tree structures have been proposed
[25], [26], [27], [28]. Both the Ladner-Fischer [25] and the Kogge-
Stone [27] parallel-prefix adders offer the minimal logical depth
property, that is, the prefix levels that they require are log2 n.
Ladner-Fischer adders, however, require significantly less im-
plementation area at the expense of a fan-out loading equal to the
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operand length compared to Kogge-Stone adders that offer a fan-
out of 2. Knowles in [28] examines combinations of the algorithms
presented in [25], [27] and presents possible trade offs of fan-out

and implementation area.
The addition of a carry input to a parallel-prefix adder can be

achieved by adding to it a single row of n prefix operators [23]. We

will call this extra row the carry increment stage. Fig. 1 presents the

resulting structure.

3 NOVEL ARCHITECTURES FOR MODULO 2n þ 1
ADDITION

In this section, we propose two architectures for modulo 2n þ 1

addition that are based on the following theorem:

Theorem 1. Let X and Y denote two ðnþ 1Þ-bit binary numbers in the

range ½0; 2n þ 1Þ. Then,

jX þ Y j2nþ1 ¼�����X þ Y þ 2n � 1
��
2nþ1 þ 2n þ 1

���
2nþ1

; if X þ Y þ 2n � 1 < 2nþ1

��X þ Y þ 2n � 1
��
2nþ1 ; otherwise:

8<
:

Proof.

jX þ Y j2nþ1 ¼
X þ Y ; if X þ Y < ð2n þ 1Þ
X þ Y � ð2n þ 1Þ; otherwise:

�

¼
jX þ Y þ 2nþ1j2nþ1 ; if X þ Y

�ð2n þ 1Þ < 0

X þ Y þ 2nþ1 � ð2n þ 1Þ � 2nþ1; otherwise:

8><
>:

¼
jX þ Y þ 2n � 1þ 2n þ 1j2nþ1 ; if X þ Y þ 2nþ1

�ð2n þ 1Þ < 2nþ1

X þ Y þ 2n � 1� 2nþ1; otherwise:

8><
>:

ð3Þ

Since X;Y 2 ½0; 2n þ 1Þ, we have that

X þ Y þ 2n � 1� 2nþ1 � 2n þ 2n þ 2n � 1� 2nþ1 ¼ 2n � 1 < 2nþ1;

therefore,

X þ Y þ 2n � 1� 2nþ1 ¼ X þ Y þ 2n � 1j j2nþ1 :

Then, from (3), we get:

jX þ Y j2nþ1 ¼�����X þ Y þ 2n � 1
��
2nþ1 þ 2n þ 1

���
2nþ1

; if X þ Y þ 2n � 1 < 2nþ1

jX þ Y þ 2n � 1j2nþ1 ; otherwise:

8<
:

ut

Theorem 1 reveals that a two-stage combinational circuit can be

utilized for the modulo addition. The first stage computes an

intermediate sum M ¼ X þ Y þ 2n � 1. Since M 2 ½2n � 1; 2nþ1 þ
2n � 1�, it has a ðnþ 2Þ bit binary representation, suppose mnþ1mn

. . .m1m0. If M < 2nþ1 or, equivalently, if the most significant bit of

M, mnþ1 ¼ 0, the term 2n þ 1 is added modulo 2nþ1 to the n least

significant bits of M by the second stage.
For computing M , a CSA that outputs a carry vector, C, and a

sum vector, S, followed by an ðnþ 1Þ-bit parallel adder, which

performs 2� C þ S, can be utilized. Since 2n � 1 in its ðnþ 1Þ-bit
binary representation has a 0 at its leftmost position and 1s at all

the other positions, the CSA is composed of one half-adder (HA) at

its leftmost position and n semihalf-adders (HA*) [22]. An HA* is

equivalent to a full-adder, with one of its inputs driven at 1.

3.1 The Proposed Parallel-Prefix with Fast Carry
Increment (PPFCI) Architecture

Our first proposed architecture is based on the adder architecture

of Fig. 1. For using it for modulo 2n þ 1 addition, in the following,

we introduce several modifications.
The ðnþ 1Þ-bit parallel-adder that computes 2� C þ S, can be

viewed as a module composed of an n-bit adder for the least

significant bits and an exclusive-NOR gate. This gate receives the

carry output, suppose cout, of the n-bit adder and the most

significant bit, cn, of the carry vector and produces mnþ1. Note that

cn is equal to 1, when both xn and yn are equal to 1. In this case, the

n-bit adder computes ðX � 2nÞ þ ðY � 2nÞ þ 2nþ1 � ð2n þ 1Þ ¼ X þ
Y � ð2n þ 1Þ. However, considering that X; Y < ð2n þ 1Þ; X þ Y �
ð2n þ 1Þ < ð2n þ 1Þ < 2nþ1. Therefore, cout cannot, in this case, be

equal to 1. We therefore conclude that cout and cn cannot be

simultaneously equal to 1 and the exclusive-NOR gate can be

replaced equivalently by an NOR gate.
To further increase the speed of the PPFCI architecture, we note

that in the ðnþ 1Þ-bit parallel adder, we have b0 ¼ 0 and, therefore,

g0 ¼ 0 and p0 ¼ s0. We can therefore use an n-bit parallel-prefix
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adder with a carry input instead. The carry computation unit of

this adder produces:

ðG1; P1Þ ¼ ðg1; p1Þ
ðG2; P2Þ ¼ ðg2; p2Þ � ðg1; p1Þ

	 	 	
ðGn; PnÞ ¼ ðgn; pnÞ � ðgn�1; pn�1Þ � . . . � ðg1; p1Þ

and small modifications in the carry increment stage are required.
Specifically, supposing that the carries of the modulo ð2n þ 1Þ
addition are denoted by c
i , we have that:

c
�1 ¼ cin

c
0 ¼ g0 _ ðp0 ^ c
�1Þ ¼ s0 ^ cin

c
i ¼ Gi _ ðPi ^ c
0Þ;

which means that an AND gate is required for producing c
0, while
the rest operators of the carry increment stage (see Fig. 1) now
receive c
0, instead of cin.

Finally, we observe that the conditional addition of ð2n þ 1Þ
when mnþ1 ¼ 0, is equivalent to the addition of 2n �mnþ1 þmnþ1.
The addition of mnþ1 can be performed directly by connecting it to
the carry input of the carry increment stage. The addition of the term
2n �mnþ1 can be omitted since this only affects the most significant
bit, rn, of the result. Taking into account that rn should be set to 1 if
X þ Y ¼ 2n or, equivalently, if M ¼ 2nþ1 � 1, we conclude that rn
can be computed straightforwardly as cn ^ Pn ^ s0.

Fig. 2 presents an example of the proposed PPFCI architecture
for the case that n ¼ 8.

3.2 The Proposed Totally Parallel Prefix (TPP)
Architecture

Instead of having a dedicated single stage for the reentering carry,
it has been proposed in [24], [19] to perform carry recirculation at
each existing prefix level. In this way, there is no need for the extra
carry increment stage. As a result, dedicated totally parallel-prefix
adder architectures are derived with one less prefix level,
compared to those derived by the PPFCI architecture.

In our case, in which the reentering carry is given by the
expression cn _Gn, following the procedure of [24], we can derive
that the carries c
i of the modulo 2n þ 1 addition are equal to G


i ,
where G


i is computed by the prefix equations:

ðG

i ; P



i Þ ¼

ððgn _ cn; pnÞ � ðGn�1;1; Pn�1;1ÞÞ; if i ¼ �1

s0 ^ ðG

�1; P



�1Þ; if i ¼ 0

ðGi;1; Pi;1Þ � s0 ^ ðGn�1;iþ1; Pn�1;iþ1Þ; if 1 � i � ðn� 2Þ;

8><
>:

ð4Þ

where:

. ðG;P Þ ¼ ðG;P Þ.

. Ga;b and Pa;b, with a > b, are respectively the group generate
and propagate signals for the group a; a� 1; a� 2; . . . ;
bþ 1; b, computed by:

ðGa;b; Pa;bÞ ¼ ðga; paÞ � ðga�1; pa�1Þ � 	 	 	 � ðgb; pbÞ:

. s ^ ðG;P Þ ¼ ðs ^G;P Þ.
In several cases, the equations indicated by (4) require more

than log2 n prefix levels for their implementation. These equations
can be transformed into equivalent ones that can be implemented
within log2 n prefix levels. The transformation required uses
Theorem 2 of [19], as well as the new Theorem 2 that we will
introduce below. For the sake of completeness, we present the
main idea of the theory in [19] below. Let t denote the inclusive-OR
of the corresponding bits of the two addition operands. If
ðGx; PxÞ ¼ ðg; pÞ � ðG;P Þ and ðGy; PyÞ ¼ ððt; gÞ � ðG;P ÞÞ, since

Gx ¼ g _ p ^G ¼ ðg _ p ^GÞ ¼ g ^ ðp _GÞ ¼ ðg ^ p _ ðg ^GÞÞ
¼ ðt _ g ^GÞ

and Gy ¼ ðt _ g ^GÞ, we get that Gx ¼ Gy. This implies that a carry

equal to the generate termwhich is expressed by a prefix equation of

the form ðg; pÞ � ðG;P Þ is also equal to the generate term of an

equation of the form ððt; gÞ � ðG;P ÞÞ.
For expressing the terms that have the form ðg1; p1Þ � ðs0 ^

ðG;P ÞÞ in prefix notation the following theorem is also required:

Theorem 2. If ðGz; PzÞ ¼ ðg1; p1Þ � s0 ^ ðG;P Þ and ðGw; PwÞ ¼
ðT1; g1; Þ � ðG;P Þ, where T1 ¼ s1 _ ða0 ^ b0Þ, then Gz ¼ Gw.

Proof. Since

ðg1; p1Þ � s0 ^ ðG;P Þ ¼ ðg1; p1Þ � s0 ^ ðG;P Þ ¼ ðg1; p1Þ � ðs0 ^G;P Þ;
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we have that:

Gz ¼ g1 _ ðp1 ^ s0 ^GÞ ¼

¼ g1 _ ðp1 ^ s0 ^GÞ ¼
¼ ðg1 ^ ðp1 _ s0 _GÞÞ ¼
¼ ððg1 ^ p1Þ _ ðg1 ^ s0Þ _ ðg1 ^GÞÞ ¼
¼ ðt1 _ ðg1 ^ s0Þ _ ðg1 ^GÞÞ ¼

¼ ðt1 _ ðg1 _ s0Þ _ ðg1 ^GÞÞ ¼

¼ ððs1 _ c0Þ _ ððs1 ^ c0Þ _ s0Þ _ ðg1 ^GÞÞ ¼

¼ ððs1 _ c0Þ _ ððs1 _ s0Þ ^ ðc0 _ s0ÞÞ _ ðg1 ^GÞÞ ¼

¼ ððs1 _ c0Þ _ ðs1 _ s0Þ _ ðg1 ^GÞÞ ¼

¼ ððs1 _ c0Þ ^ ðs1 _ s0Þ _ ðg1 ^GÞÞ ¼

¼ ððs1 _ ðc0 ^ s0ÞÞ _ ðg1 ^GÞÞ ¼

¼ ððs1 _ ða0 ^ b0ÞÞ _ ðg1 ^GÞÞ ¼

¼ ðT1 _ ðg1 ^GÞÞ; where T1 ¼ s1 _ ða0 ^ b0Þ:

ð5Þ

The latter is the logic equation of Gw. tu
As shown in [19] for area-time efficient implementations, the

above transformations should be applied j times (the introduced

Theorem2 is applied once andTheorem2of [19] j� 1 times) to those

equations of (4) that have the form ðgi; piÞ � ðgi�1; pi�1Þ � 	 	 	 � ðg1; p1Þ
�ðGn;iþ1; Pn;iþ1Þ. j should be such that:

n� iþ j ¼ n; if i � n
2 � 1

n
2 ; if i > n

2 � 1:

�

The carry equations resulting from the abovemodification can be

implemented by a prefix structure that has log2 n levels. The last (the

closest to the outputs of the adder) prefix level requires n� 1 prefix

operators, whereas each prefix level i, with 1 � i � log2 n� 1,

requires 3
2n� 2i prefix operators. The total number of prefix

operators required by the TPP architecture is 3
2nðlog2 n� 1Þ þ 1.

Example 1. For the implementation of a modulo 257 TPP adder, (4)

provides us with the following set of prefix equations:

c
�1 ¼ ððg8_c8 ;p8Þ � ðg7 ;p7Þ � ðg6 ;p6Þ � ðg5 ;p5Þ � ðg4 ;p4Þ � ðg3 ;p3Þ � ðg2 ;p2Þ � ðg1 ;p1ÞÞ

c
0 ¼ s0^c
�1

c
1 ¼ ðg1 ;p1Þ � ðs0^ððg8_c8 ;p8Þ � ðg7 ;p7Þ � ðg6 ;p6Þ � ðg5 ;p5Þ � ðg4 ;p4Þ � ðg3 ;p3Þ � ðg2 ;p2ÞÞÞ

c
2 ¼ ðg2 ;p2Þ � ðg1 ;p1Þ � ðs0^ððg8_c8 ;p8Þ � ðg7 ;p7Þ � ðg6 ;p6Þ � ðg5 ;p5Þ � ðg4 ;p4Þ � ðg3 ;p3ÞÞÞ

c
3 ¼ ðg3 ;p3Þ � ðg2 ;p2Þ � ðg1 ;p1Þ � ðs0^ððg8_c8 ;p8Þ � ðg7 ;p7Þ � ðg6 ;p6Þ � ðg5 ;p5Þ � ðg4 ;p4ÞÞÞ

c
4 ¼ ðg4 ;p4Þ � ðg3 ;p3Þ � ðg2 ;p2Þ � ðg1 ;p1Þ � ðs0^ððg8_c8 ;p8Þ � ðg7 ;p7Þ � ðg6 ;p6Þ � ðg5 ;p5ÞÞÞ

c
5 ¼ ðg5 ;p5Þ � ðg4 ;p4Þ � ðg3 ;p3Þ � ðg2 ;p2Þ � ðg1 ;p1Þ � ðs0^ððg8_c8 ;p8Þ � ðg7 ;p7Þ � ðg6 ;p6ÞÞÞ

c
6 ¼ ðg6 ;p6Þ � ðg5 ;p5Þ � ðg4 ;p4Þ � ðg3 ;p3Þ � ðg2 ;p2Þ � ðg1 ;p1Þ � ðs0^ððg8_c8 ;p8Þ � ðg7 ;p7ÞÞÞ:

A parallel prefix carry computation unit that requires only
three prefix levels can be derived by transforming the equations
describing c
1, c



2, c



3, c



5, and c
6 into the following:

c
1 ¼ ððT1 ;g1Þ � ðg8_c8 ;p8Þ � ðg7 ;p7Þ � ðg6 ;p6Þ � ðg5 ;p5Þ � ðg4 ;p4Þ � ðg3 ;p3Þ � ðg2 ;p2ÞÞ

c
2 ¼ ððt2 ;g2Þ � ðT1 ;g1Þ � ðg8_c8 ;p8Þ � ðg7 ;p7Þ � ðg6 ;p6Þ � ðg5 ;p5Þ � ðg4 ;p4Þ � ðg3 ;p3ÞÞ

c
3 ¼ ððt3 ;g3Þ � ðt2 ;g2Þ � ðT1 ;g1Þ � ðg8_c8 ;p8Þ � ðg7 ;p7Þ � ðg6 ;p6Þ � ðg5 ;p5Þ � ðg4 ;p4ÞÞ

c
5 ¼ ðg5 ;p5Þ � ðg4 ;p4Þ � ðg3 ;p3Þ � ðg2 ;p2Þ � ððT1 ;g1Þ � ðg8_c8 ;p8Þ � ðg7 ;p7Þ � ðg6 ;p6ÞÞ

c
6 ¼ ðg6 ;p6Þ � ðg5 ;p5Þ � ðg4 ;p4Þ � ðg3 ;p3Þ � ððt2 ;g2Þ � ðT1 ;g1Þ � ðg8_c8 ;p8Þ � ðg7 ;p7ÞÞ:

The attained TPP implementation for the modulo 28 þ 1 adder

case is given in Fig. 3.

4 COMPARISONS

In this section, we compare the proposed PPFCI and TPP adders

against those designed according to [22]. We remind that the

architecture proposed in [22] was shown to outperform those of [20]

and [21] in terms of implementation area and execution latency. In

the case of the PPFCI architectures, a Ladner-Fischer [25] parallel-

prefix carry computation scheme is adopted. We assume modulo

adders, with n = 4, 8, and 16. All architectures were described in

HDL and mapped to the UMC-VST 25 implementation technology

(0:25 �m, up to 5-metal layers, 1:8=3:3V), using the Design

Compiler1 tool set of Synopsys1. All area implementation results

are given in �m2, while all propagation delay results are in ns.

For evaluating the speed efficiency of each architecture, each

mapped design was recursively optimized for speed until the tool

was unable to produce a faster design. Area recovery steps

followed. This methodology leads to the fastest designs attained by

each architecture. The obtained results are listed in Table 1. As we

can see both proposed architectures lead to faster implementations

than that of [22]. This is due to the fact that the architecture of [22]

requires a delay of two CLA computation units connected in series.

The proposed architectures, on the other hand, rely on a single

carry computation unit. As the adder size increases, the speed

advantage of the proposed architectures also increases because the

delay of each CLA computation unit required in the architecture of

[22] increases as well. The TPP architecture offers the fastest

designs reported in the open literature for modulo 2n þ 1 adders

that use the normal binary number system. It is faster than the

PPFCI architecture because it is composed of one less prefix level

and because of the increased fan-out requirements of the

reentering carry in the PPFCI architecture. Note that the latter is

also the reason that the speed gap between the TPP and the PPFCI

architectures increases along with the adder size.

For comparing the area complexities of the different architec-

tures, we optimized all designs until they reached the same

operating speed. We considered as targets, the latencies offered by

the architecture of [22]. Then, recursive area optimization steps

were applied to the designs, until the tool was unable to provide a

smaller implementation. This procedure leads to the smallest

adder provided by each architecture that is capable to operate at

the target speed. The attained results are indicated in Table 2. The

proposed PPFCI and TPP adders are far more area efficient than

those of [22]. As n increases both proposed architectures become

more attractive.

We also have to compare the proposed adders against modulo

2n þ 1 adders with operands in diminished-one representation. A

TPP adder has the same prefix levels as the adders proposed in

[19], without requiring converter circuits to and from the normal

binary system, which increase both the execution latency and the

implementation area. Moreover, no special treatment is required

for zero operands. Therefore, the proposed TPP adders are more

efficient than the fastest modulo 2n þ 1 adders which handle

operands in diminished-one representation.

Finally, it is useful to compare the execution latency of the

proposed adders against modulo 2n and modulo 2n � 1 adders,

since their speed differences will determine the execution speed in

an RNS implementation that adopts the three moduli set

f2n; 2n � 1; 2n þ 1g. For this comparison, we adopt the unit gate

model [29]. This model assumes that each gate excluding

exclusive-OR gates has a delay of 1. Exclusive-OR gates have a

delay of 2. The execution latencies of the fastest reported modulo

2n [25], [27], [28] and modulo 2n � 1 [24] adders, according to the

considred model, are equal to ð2� log2 nþ 3Þ. The proposed PPFCI
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and TPP adders offer execution latencies equal to ð2� log2 nþ 9Þ

and ð2� log2 nþ 6Þ, respectively, that is, only few gates more than

the rest channels. The use of the proposed architectures therefore

minimizes the overhead imposed on the RNS operation speed.
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TABLE 1
Time Optimization Comparison Results

Fig. 3. TPP modulo 28 þ 1 adder.

TABLE 2
Area Optimization Comparison Results



5 CONCLUSIONS

Two new architectures have been presented for designing modulo
2n þ 1 adders, based on the use of a parallel-prefix carry
computation unit. The PPFCI architecture utilizes a fast carry
increment stage, whereas in the TPP architecture, there is no need
for such a stage since reentering carry recirculation is performed
within each existing prefix level. Full static CMOS implementa-
tions have revealed the proposed adders’ efficiency against
previous solutions in both implementation area requirements
and execution latency. The proposed architectures lead to the
fastest reported modulo 2n þ 1 adders, with execution latencies
closer to the execution latency of the fastest modulo 2n and modulo
2n � 1 adders than any other reported solution.
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