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Abstract—2n � 1 is one of the most commonly used moduli in Residue Number

Systems. In this paper, we propose a new method for designing modified Booth

modulo 2n � 1 multipliers, which, for even values of n, require one less partial

product than the already known. CMOS implementations reveal that the proposed

multipliers compared to earlier solutions offer savings up to 28.7 percent and up to

29.3 percent in the implementation area and execution delay, respectively.

Index Terms—Residue Number System, Mersenne arithmetic, one’s complement

arithmetic, Booth multipliers, VLSI design.
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1 INTRODUCTION

A Residue Number System (RNS) is characterized by a set, say
fm1;m2; . . . ; mLg, of Lmoduli that are pairwise relatively prime [1].
An integer X, with 0 � X < M , where M ¼ m1 �m2 � � � � �mL,
has a unique representation in the RNS given by the set of residues
X ¼ fx1; x2; . . . ; xLg, where xi ¼ X modmi. A two-operand RNS
operation, say �, is defined as

fz1; z2; . . . ; zLg ¼ fx1; x2; . . . ; xLg � fy1; y2; . . . ; yLg;

where zi ¼ ðxi � yiÞmodmi and � can be modular addition,
subtraction, or multiplication. That is, in an RNS, arithmetic
operations are performed in parallel units, each one handling small
residues instead of a single unit that handles large numbers.

Moduli choices of the forms f2n; 2n � 1; 2n þ 1g and f2n; 2n �
1; 2n�1 � 1g have received significant attention because they offer
very efficient circuits when considering the area � time2 product
[2] and efficient converters from and to the binary system [3], [4].
Therefore, designing efficient modulo 2n � 1 multipliers is an
interesting issue.

The most efficient modulo 2n � 1 multipliers based on the use
of lookup tables were proposed in [5]. However, due to the
exponential growth of ROM sizes with respect to the size of the
modulus, implementations based solely on combinational hard-
ware are more suitable for medium and large moduli. In [6],
modulo 2n � 1multipliers based on Wallace trees were introduced.
The number of partial products in [6] is proportional to the
operand length. To overcome this problem, modified Booth
modulo 2n � 1 multipliers were proposed in [7].

In this paper, we give a new design method for modified Booth
modulo 2n � 1multipliers, which, for even values of n, leads to one
less product compared to the design in [7]. Static CMOS
implementations show that, when n is even, the proposed
multipliers offer significant savings in physical area and execution
delay against those in [6], [7]. Modulo 2n � 1 multipliers based
both on Carry Save Adder (CSA) arrays and Wallace tree partial
product reduction are examined in this work.

The rest of the paper is organized as follows: Preliminaries are
given in Section 2, while the proposed modified Booth modulo
2n � 1 multipliers are derived in Section 3. Implementation

analysis and results verifying the effectiveness of the proposed

architecture are presented in Section 4. Our conclusions are drawn

in the last section.

2 PRELIMINARIES

Hereafter, we adopt the widely used 2-bit recoding form of the

modified Booth algorithm for the multiplication of A�B. In this

algorithm, successive overlapping triplets of the bits of multiplierB

are examined and encoded, each one by a Booth encoder block, as

an element of the set f�2;�1; 0;þ1;þ2g. Several implementations

can be devised for the encoder block, depending on the adoption of

a 4 or a 3-bit bus for encoding the five elements of the set. In this

work, we adopt the 3-bit bus approach since it led to faster

implementations. Fig. 1a and Fig. 1b present the truth table and the

implementation adopted for the Booth encoder, respectively. The

encoded information produced by each encoder block, along with

the multiplicand A, is used for forming a partial product. Every bit

of each partial product is produced by a Booth selector block.

Fig. 1c and Fig. 1d present the truth table and the implementation

adopted for the Booth selector, respectively (the notation x is used

to denote the complement of x).
The resulting partial products are then reduced to two by

successive additions of their bits with equal weight, in several

stages. The carry output at the most significant bit position of each

stage has a weight of 2n, which, in modulo 2n � 1 arithmetic, is

equal to 1. Therefore, these carries are added in an end-around

carry way to the least significant bit position of the operands of the

next stage. The reduction of the partial products can be

implemented by various architectures; CSA arrays and adder

trees (Wallace trees) are some widely used solutions. Compressors

of higher degree than a full-adder, which can be considered as a

ð3; 2Þ compressor, may also be used. The two operands produced

are added in a parallel modulo 2n � 1 adder [8], [9] that computes

the final result.

3 THE PROPOSED MODIFIED BOOTH MODULO 2n � 1
MULTIPLIERS

In this section, we describe the suggested architecture for a

modified Booth modulo 2n � 1 multiplier. Suppose that A ¼
an�1an�2 � � � a1a0 and B ¼ bn�1bn�2 � � � b1b0 are two n-bit numbers

in modulo 2n � 1 representation, where A is the multiplicand and

B the multiplier. Let jAjx denote the modulo x residue of A.
In order to reduce the number of the partial products of the

multiplication, the multiplier B can be expressed as:

B ¼
Xn�1

i¼0

bi2
i ¼ ðb0 � 2b1Þ þ

Xbn2c
i¼1

ðb2i�1 þ b2i � 2b2iþ1Þ22i;

where bj ¼ 0 for j � n and bkc denotes the largest integer smaller

than or equal to k.
We distinguish the following two cases for n:

. n is even:

B ¼ bn�12
n þ ðb0 � 2b1Þ þ

Xn2 �1

i¼1

ðb2i�1 þ b2i � 2b2iþ1Þ22i:

Taking into account that B ¼ jBj2n�1, we get:
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B ¼ jBj2n�1 ¼ bn�12
n þ ðb0 � 2b1Þj

þ
Xn2 �1

i¼1

ðb2i�1 þ b2i � 2b2iþ1Þ22i
�����
2n�1

¼ ðbn�1 þ b0 � 2b1Þj

þ
Xn2 �1

i¼1

ðb2i�1 þ b2i � 2b2iþ1Þ22i
�����
2n�1

:

Then, setting b�1 ¼ bn�1, we get:

B ¼
Xn2 �1

i¼0

ðb2i�1 þ b2i � 2b2iþ1Þ22i
�����

�����
2n�1

: ð1Þ

Relation (1) indicates that a single Booth encoder can be

utilized for handling the inputs b1, b0, and bn�1. In [7], two

different Booth encoder blocks are used for handling the

same inputs: one that receives as inputs the signals b1, b0,

and 0 and another that receives the signals 0, 0, and bn�1 as

inputs. As a result, our architecture requires one less

partial product for even values of n. This translates into

hardware savings of one Booth encoder, n Booth selectors,

and n full-adder blocks, along with their interconnections.
. n is odd:

B ¼
Xnþ1
2 �1

i¼0

ðb2i�1 þ b2i � 2b2iþ1Þ22i; ð2Þ

where b�1 ¼ bn ¼ 0.

We can combine (1) and (2) into

B ¼
Xbnþ1
2 c�1

i¼0

ðb2i�1 þ b2i � 2b2iþ1Þ22i
������

������
2n�1

;

where b�1 ¼ bn�1 for even values of n and b�1 ¼ bn ¼ 0 for odd

values of n.
The value of the product A�B modulo 2n � 1 can then be

expressed as:

ABj j2n�1 ¼ A
Xbnþ1
2 c�1

i¼0

ðb2i�1 þ b2i � 2b2iþ1Þ22i
������

������
2n�1

¼
Xbnþ1
2 c�1

i¼0

Aðb2i�1 þ b2i � 2b2iþ1Þ22i
�� ��

2n�1

������
������
2n�1

¼
Xbnþ1
2 c�1

i¼0

PPi

������
������
2n�1

;

where PPi ¼ Aðb2i�1 þ b2i � 2b2iþ1Þ22i
�� ��

2n�1
:

ð3Þ

Since the terms be;i ¼ ðb2i�1 þ b2i � 2b2iþ1Þ can take values in the

set f�2;�1; 0;þ1;þ2g, be;i22i ¼ s2j, where:

s ¼
þ1; if be;i ¼ þ1;þ2

0; if be;i ¼ 0

�1; if be;i ¼ �1;�2

8><
>: and

j ¼
0; if be;i ¼ 0

2i; if be;i ¼ þ1;�1

2iþ 1; if be;i ¼ þ2;�2:

8><
>:

Substituting this in (3), we get that PPi ¼ sA2jj j2n�1.

Using the following lemma, we can express the partial products

PPi ¼ sA2jj j2n�1, in n bits, directly from the bits of the multi-

plicand A.

Lemma 1. Let A ¼ an�1an�2 � � � a1a0 be a number in ½0; 2n � 1Þ. Then,

sA2j
�� ��

2n�1
¼

an�1�jan�2�j . . . a0an�1an�2 . . . an�j; if s ¼ þ1
an�1�j an�2�j . . . a0 an�1 an�2 . . . an�j; if s ¼ �1
000 . . . 00|fflfflfflfflfflffl{zfflfflfflfflfflffl}

n bits

; if s ¼ 0:

8>><
>>:

IEEE TRANSACTIONS ON COMPUTERS, VOL. 53, NO. 3, MARCH 2004 371

Fig. 1. Truth tables and implementations for the Booth encoder (a), (b) and the Booth selector blocks (c), (d).



Proof.

A2j ¼
Xn�1

i¼0

ai2
i

 !
2j ¼

Xn�1�j

i¼0

ai2
i

 !
2j þ

Xn�1

i¼n�j

ai2
i

 !
2j

¼
Xn�1�j

i¼0

ai2
i

 !
2j þ

Xj�1

i¼0

an�1�i2
j�1�i

 !
2n

¼
Xn�1�j

i¼0

ai2
i

 !
2j þ

Xj�1

i¼0

an�1�i2
j�1�i

 !

þ
Xj�1

i¼0

an�1�i2
j�1�i

 !
ð2n � 1Þ

¼ ðan�1�jan�2�j . . . a0an�1an�2 . . . an�jÞ
þ ðan�1an�2 . . . an�jÞð2n � 1Þ:

ð4Þ

We distinguish the following three cases:

. s ¼ þ1. Then, using (4), we get:

sA2j
�� ��

2n�1
¼ an�1�jan�2�j . . . a0an�1an�2 . . . an�j

�� ��
2n�1

¼ an�1�jan�2�j . . . a0an�1an�2 . . . an�j:

. s ¼ �1. Taking into account that j � Y jx ¼ jx� Y jx,
from (4), we get:

sA2j
�� ��

2n�1
¼ ð2n � 1Þj

�ðan�1�jan�2�j . . . a0an�1an�2 . . . an�jÞ
��
2n�1

¼ an�1�j an�2�j . . . a0 an�1 an�2 . . . an�j

�� ��
2n�1

¼ an�1�j an�2�j . . . a0 an�1 an�2 . . . an�j:

. s ¼ 0. In this case, sA2jj j2n�1¼ 0 ¼ 000 . . . 00|fflfflfflfflfflffl{zfflfflfflfflfflffl}
n bits

. tu

Lemma 1 indicates that the partial products can be expressed

according to Table 1. According to the first and the last lines of

Table 1, an all 1s input will be treated as a zero input, although, in

pure modulo 2n � 1 arithmetic, such an operand is not applicable.
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TABLE 1
Formation of the Partial Products

Fig. 2. Proposed modified Booth modulo 255 multiplier.



However, depending on the final adder choice (see [9]), the

multiplier can be forbidden from producing the all 1s output.
Fig. 2 presents the proposed design for a modulo 28 � 1

multiplier. As mentioned earlier, a single Booth encoder is used for

inputs fb1; b0; b7g in contrast to the design in [7], where two

different Booth encoder blocks for handling the same inputs are

used; one for fb1; b0; 0g and another for f0; 0; b7g.

4 COMPARISONS

In this section, we compare the proposed multipliers against the

multiplier designs of [6] and [7] that are considered the most

efficient in the literature.
Let AFA denote the area of a full adder (FA) and TFA its delay,

ABE the area of a Booth encoder (BE) and TBE its delay, ABS the

area of a Booth selector (BS) and TBS its delay, and APAn
the area of

a modulo 2n � 1 adder (PAðnÞ) and TPAn
its delay. Further, let kðxÞ

denote the depth in FAs of each Wallace tree when adding x partial

products in modulo 2n � 1 arithmetic. kðxÞ is equal to 0, 1, 2, 3, 4, 4,

6, 6, and 8 when x is 2, 3, 4, 5, 8, 9, 16, 17, and 32, respectively [10].

The number of FAs required in each tree is equal to x� 2.
The multipliers presented in [6] require n2 gates for forming the

partial products. For reducing the n partial products in two

summands, either ðn� 2Þ CSA stages [7], each consisting of n FAs,

or n Wallace trees, each adding n bits of equal weight, can be used.

The result is obtained by a final PAðnÞ. Thus, their total area when

either a CSA array or Wallace trees are used is equal to

A½6� ¼ n2 þ nðn� 2ÞAFA þ APAn
. Their delay can be modeled by

T½6�CSA ¼ 1þ ðn� 2ÞTFA þ TPAn
when a CSA array is used and by

T½6�WAL ¼ 1þ kðnÞTFA þ TPAn
when Wallace trees are used.

The multipliers in [7] produce ðbn2c þ 1Þ partial products

utilizing ðbn2c þ 1Þ BE and nðbn2c þ 1Þ BS blocks. These partial

products are reduced to two summands by either ðbn2c � 1Þ CSA

stages, each consisting of n FAs, or of n Wallace trees, each adding

bn2c þ 1 bits. The two summands are finally added using a PAðnÞ.
The total area occupied when either a CSA array or Wallace trees

are used is equal to

A½7� ¼ n

2

j k
þ 1

� �
ABE þ n

n

2

j k
þ 1

� �
ABS þ n

n

2

j k
� 1

� �
AFA þAPAn

:

Their delay can be modeled by T½7�CSA ¼ TBE þ TBS þ ðbn2c �
1ÞTFA þ TPAn

when a CSA array is used and by T½7�WAL ¼
TBE þ TBS þ kðbn2c þ 1ÞTFA þ TPAn

when Wallace trees are used.
Finally, the proposed design requires an area equal to

AProposed ¼ dn2eABE þ ndn2eABS þ nðdn2e � 2ÞAFA þ APAn
when either

a CSA array or Wallace trees are used. The delay of the proposed

multipliers is equal to TProposed;CSA ¼ TBE þ TBS þ ðdn2e � 2ÞTFA þ
TPAn

when a CSA array is used and equal to TProposed;WAL ¼
TBE þ TBS þ kðdn2eÞTFA þ TPAn

when Wallace trees are used.
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TABLE 2
Area Comparisons

TABLE 4
Implementation Results for Modulo 2n � 1 Booth Multipliers with Wallace Trees Partial Products Reduction

TABLE 3
Delay Comparisons



Based on the unit-gate model [11], we get the following
approximations:

. ABE ¼ 5 equivalent gates, TBE ¼ 3 time units (see Fig. 1b),

. ABS ¼ 5 equivalent gates, TBS ¼ 4 time units (see Fig. 1d),

. AFA ¼ 7 equivalent gates, TFA ¼ 4 time units, and

. APAn
¼ 3n lognþ 4n equivalent gates, TPAn

¼ 2 lognþ 3
time units [9].

The area savings of the proposed design against the architectures
of [6] and [7] is shown in Table 2 for n ¼ 4; 8; 16, and 32. The delay
savings of the proposed design against the architectures in [6] and
[7] when either a CSA array or a Wallace tree partial products
reduction scheme is used are presented in Table 3.

The proposed designs are up to 23.6 percent more area efficient
than the multipliers proposed in [6], with an average area savings
of 21.8 percent. Compared against the multipliers of [7], the
proposed multipliers offer smaller implementations by 18.5 percent
on the average and bymore than 10 percentwhen n � 16. In parallel,
the proposed multipliers lead to up to 43.3 percent and 22.2 percent
faster implementations than the architectures in [6] and [7],
respectively, when a CSA array is used. The corresponding savings
are up to 12.5 percent and 22.2 percent whenWallace trees are used.
On average, the proposedmultipliers are faster by themultipliers in
[6] and [7] by 30.9 percent and 12.6 percent, respectively, when a
CSA is used and by 7.5 percent and 9.1 percent, respectively, when
Wallace trees are used.

The above comparisons are only an approximation since they
ignore routing as well as fan-in and fan-out requirements. For a
more accurate comparison, we implemented our proposed modulo
2n � 1 multipliers and compared them against those of [6] and [7]
in static CMOS VLSI technology. We first described each multiplier
in a hardware description language and then mapped them to the
AMS1 CUB1 implementation technology (0:6�m, 2-metal layer,
5.0 V), using the Synopsys1 Design Compiler1 tool. During
synthesis, the netlists were optimized for speed and, as a
secondary target, the tool was instructed to try to recover as much
area as possible. All the presented results associated with
execution latency assume worst-case process parameters and are
measured in nanoseconds ðnsÞ, whereas we use square milimeters
of an inch (mils2) as a metric for area-related results.

We implemented both the proposed modulo 2n � 1 multipliers
and those in [6] and [7] for n ¼ 4; 8; 16, and 32 bits, using Wallace
trees partial products reduction, since this reduction scheme,
according to Tables 2 and 3, leads to faster implementations,
without increasing the occupied physical area. In all designs, we
used the fast modulo 2n � 1 parallel-prefix adder proposed in [9]
as the final stage adder. The obtained results are listed in Table 4.
The results indicate that the proposed multipliers are up to
23.5 percent more area efficient than the multipliers in [6], while
being up to 28.7 percent faster. The average area and delay savings
in the examined operand width range are 9.4 percent and
11.6 percent, respectively. The proposed multipliers are also up
to 28.7 percent more area efficient than the multipliers in [7] while
being up to 29.3 percent faster. In this case, the average area and
delay savings are 12.7 percent and 12.4 percent, respectively.

5 CONCLUSIONS

In this paper, we have presented a new architecture for modified
Booth modulo 2n � 1 multipliers. The resulting multipliers
compare favorably, with respect to speed and implementation
area, against the known modulo 2n � 1 multipliers.
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