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Abstract—Modulo 2n ÿ 1 adders as fast as n-bit 2’s complement adders have been recently proposed in the open literature. This

makes a Residue Number System (RNS) adder with channels based on the moduli 2n, 2n ÿ 1, and any other of the form 2k ÿ 1, with

k < n, faster than RNS adders based on other moduli. In this paper, we formally derive a parametric, with respect to the adder size, test

set, for parallel testing of the channels of an RNS adder based on moduli of the form 2n; 2n ÿ 1; 2k ÿ 1; 2l ÿ 1; . . . ; with l < k < n. The

derived test set is reusable; it can be used for any value of n; k; l; . . . , regardless of the implementation library used and is composed of

n2 þ 2 test vectors. A test-per-clock BIST scheme is also proposed that applies the derived test vectors within n2 þ 2n cycles. Static

CMOS implementations reveal that the proposed BIST offers 100 percent postcompaction fault coverage and an attractive

combination of test time and implementation area compared to ROM and FSM-based deterministic BIST or LFSR-based

pseudorandom BIST.

Index Terms—Residue Number System, Built-In Self-Test, deterministic and pseudorandom tests, formal test sets.
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1 INTRODUCTION

BUILT-IN Self-Test (BIST) is an effective approach for
testing contemporary integrated circuits (ICs) that

reduces the need for external test since the circuit and its
tester are implemented in the same chip, enabling the
circuit to test itself. To meet the ever-shrinking time-to-
market requirements of custom ICs, rapid test-pattern
generation and test set embedding are essential. Test sets
derived by deterministic test pattern generation, however,
require large implementation areas if embedded as a finite
state machine or by storing them in an ROM, while easily
implementable pseudorandom test pattern generators
require long test sequences. Besides the specific disadvan-
tages mentioned previously, the above schemes, except the
ROM-based one, suffer from lack of reusability. In the case
of regular circuits, reusable formal test sets may be derived,
which are parameterized with respect to the number of
inputs of the circuit. If this test set is also independent of the
implementation library, migration to new libraries can be
done rapidly. In this paper, we derive a formal test set and
propose an efficient BIST scheme for Residue Number
System (RNS) adders.

The RNS has been widely investigated and used in

Digital Signal Processing (DSP) applications [1], [2]. A set of

L moduli, suppose m1;m2; . . . ;mLð Þ, that are pairwise

relative prime is used to define an RNS. Any integer X,

with 0 � X < M, where M ¼ m1 �m2 � . . .�mL, has a

unique representation in the RNS given by the L-tuple of

residues X ¼ x1; x2; . . . ; xLð Þ, where xi ¼ X modmi. A two

operand RNS operation, suppose �, is defined as
z1; z2; . . . ; zLð Þ ¼ x1; x2; . . . ; xLð Þ � y1; y2; . . . ; yLð Þ, w h e r e
zi ¼ xi � yið Þmodmi. In most RNS applications, � is either
addition, subtraction, or multiplication. According to the
above, each residue can be computed independently of the
others allowing fast data processing in L parallel indepen-
dent channels.

The latency of an RNS operation depends on the latency
of the slowest among the channels. The delay of an adder
modulo m is greater when m 6¼ 2n. Efficient designs for the
RNS channels have been recently proposed in [3], [4], [5] for
m of the form 2n ÿ 1. The authors of [3], [4], respectively,
propose Carry Look-Ahead (CLA) and parallel-prefix de-
sign methodologies for modulo 2n ÿ 1 adders that lead to
implementations that can operate as fast as modulo 2n

adders. Modulo 2n ÿ 1 modified Booth multipliers that can
operate as fast as the corresponding integer multipliers
were introduced in [5]. According to the above, RNS adders
based on moduli of the form 2n; 2n ÿ 1; 2k ÿ 1; 2l ÿ 1; . . . ,
with l < k < n, lead to the fastest implementations. For this
reason, we focus on RNS with moduli of this form. In most
practical cases, the choice L ¼ 3 and k ¼ nÿ 1 is preferred.
Examples of such systems using earlier design methodol-
ogies for the modulo 2n ÿ 1 channel have been presented in
[6], [7], [8]. Efficient residue to binary converters in the L ¼
3 and k ¼ nÿ 1 case, have been proposed in [9], [10].

Formal test sets for CLA integer adders have been
presented in [11], [12]. In [11], the authors show that 2�
nþ 1ð Þ vectors are sufficient for testing a simple n-bit CLA

inclusive-OR adder. The author of [12] derives test sets for
exclusive-OR CLA and block-CLA adders. Inclusive-OR
CLA adders are faster than exclusive-OR CLA adders.

In this paper, we derive a formal test set for modulo 2n

inclusive-OR CLA and parallel prefix adders, consisting of
2� n vectors, and, for the first time in the open literature, a
formal test set for modulo 2n ÿ 1 full CLA and parallel-
prefix inclusive-OR adders. We show that extracting from
the latter test set a subset of k bit positions k < nð Þ in order,
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will form a reduced width test set for testing a modulo
2k ÿ 1 or a modulo 2k adder. Therefore, the test set of a
modulo 2n ÿ 1 adder is a superset of the test set of any
modulo 2k ÿ 1; 2l ÿ 1; . . . ; adder with l < k < n. By merging
the test sets derived for modulo 2n and modulo 2n ÿ 1
adders, we get a formal test set for an RNS adder based on
the moduli 2n; 2n ÿ 1; 2k ÿ 1; 2l ÿ 1; . . .


 �
, consisting of n2 þ

2 vectors. Our test sets, apart from being composed of a
small O n2ð Þð Þ number of vectors, also have the advantage
that they are derived based on the adder’s equations and
are parameterized with respect to the size of the adder;
therefore, they are reusable. A designer can use them,
irrespective of the implementation library that he targets or
the size of the operands.

We also present a novel Built-In Self-Test (BIST) scheme
that can apply the formal test set in O n2ð Þ cycles and
compare it against other BIST alternatives. Static CMOS
implementations are utilized for comparing the proposed
BIST scheme against Linear Feedback Shift Registers
(LFSR)-based pseudorandom BIST as well as against ROM
or Finite State Machine (FSM)-based deterministic BIST
solutions. The attained results reveal that the proposed BIST
offers 100 percent postcompaction fault coverage and an
attractive combination of test application time and imple-
mentation area.

2 PRELIMINARIES

Let A ¼ anÿ1anÿ2 . . . a1a0 and B ¼ bnÿ1bnÿ2 . . . b1b0 be
two n-bit numbers. For computing their sum,
S ¼ snÿ1snÿ2 . . . s1s0, one needs to compute the carries
cnÿ1; cnÿ2; . . . ; c0 since the sum at position i is given by the
relation si ¼ ai � bi � ciÿ1. Note that cÿ1 is the input carry
and cnÿ1 the output carry.

To speed up the addition operation, the carry computa-
tion time should be minimized. To this end, carry look-
ahead (CLA) adders [13], [14] are used. Since the circuit
required by the carry look-ahead logic grows rapidly with
the operand width, it is quite profitable to divide the carry
computation unit into smaller units. The carry outputs of
these smaller units can then either ripple between them or
be driven to a CLA unit of a subsequent level, leading to
two or more level CLA adders. If carry computation is
treated as a prefix-problem, a special form of multilevel
CLA adders can be derived, which are well-known as
parallel-prefix adders.

When dealing with CLA adders, two functions are
commonly used for describing the equations for the carries:

. gi ¼ ai � bi, the carry generate function, and

. pi, the carry propagate function.

The propagate function can be defined in two alternative
ways. Its definition affects the adder’s testability [11], [12].
In inclusive-OR CLA adders, pi is defined as pi ¼ ai þ bi
and another function, suppose hi ¼ ai � bi, is commonly
used to denote the half-sum at bit position i. Obviously,
si ¼ hi � ciÿ1. In exclusive-OR CLA adders, pi ¼ ai � bi and
si ¼ pi � ciÿ1. Since, in current CMOS technology, an OR
gate is faster than an XOR gate, inclusive-OR CLA adders
are faster than the corresponding exclusive-OR ones.
Therefore, in this paper, we consider inclusive-OR CLA

adders. In an integer adder, the carry at bit position i is

given by:

ci ¼ gi þ
Xiÿ1

j¼0

Yi
k¼jþ1

pk

 !
gj þ

Yi
k¼0

pk

 !
cÿ1; for � i � nÿ 1:

Several fault models have been proposed for represent-

ing the actual faults of CMOS integrated circuits. The most

common, however, is still the single stuck-at fault model

because of its effectiveness and its simplicity. In this paper,

for every cell, we exercise the logical paths from their inputs

to their outputs and propagate the fault effects to the

primary outputs of the circuit, which is equivalent to stuck-

at fault test generation [12]. A library containing just the

most primitive gates: inverters, 2 input AND, NAND, OR,

and NOR gates is assumed. More complex gates are

replaced by equivalent circuits built by the library elements.

For example, although three tests are adequate for covering

a 2-input XOR gate, by the above assumptions, the

exhaustive four vector test is required. Note also that, by

the above assumptions, no changes are required to the

extracted test patterns if a library that includes multiple-

input versions of the primitive elements is assumed [11].
For describing our test patterns, we use the notation

introduced in [12] which utilizes carry propagation and

generation across multiple adjacent bit positions. The

notation is restated here for the sake of completeness:

Gl is a test that generates a carry out of l adjacent pairs of

bits.

Pl is a test that permits carry propagation across l adjacent

pairs of bits without generating a carry out.

Ol denotes a test that neither permits carry propagation nor

carry generation out of l adjacent pairs of bits.

Xl denotes “don’t care.”

Pl denotes not Pl (equivalently, Ol for the inclusive-OR

adder case).

Gl denotes not Gl (equivalently, Pl or Ol).

A complete test vector is written as a product list

with the most significant bits at the left. For example,

a3; b3; a2; b2; a1; b1; a0; b0;ð Þ ¼ ð1; 0; 1; 1; 0; 1; 0; 1Þ is denoted as

P �G � P � P½ � or, equivalently, P �G � P 2½ �. The notation Pa
and Pb is used for distinguishing between the cases a; bð Þ ¼
ð1; 0Þ and (0, 1), respectively. The existence of carry-ins and

carry-outs in test vectors, wherever they are needed, are

handled by the + and – symbols as follows:

Tþ is a test that requires a carry-in.

Tÿ is a test that requires not to have a carry-in.

þT is a test that produces a carry-out.

ÿT is a test that does not produce a carry-out.

A test set consisting of k vectors is denoted by:

T1

T2

. . .
Tk

��������
��������:
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3 A FORMAL TEST SET FOR RNS ADDERS

3.1 Modulo 2n Inclusive-OR Adder Test Set
Derivation

We consider single-level CLA or parallel-prefix adder

implementations [13], [14]. A modulo 2n adder differs from

an integer adder at the following:

1. A carry input signal is not present, hence p0 is not
required.

2. A carry output signal and the logic required for its
production is not required, hence pnÿ1 and gnÿ1 are
not required.

Since a modulo 2n adder does not have a carry-in signal,

the test sets derived for inclusive-OR integer adders in [11],

[12] cannot be straightforwardly applied. However, we can

follow a similar procedure in order to derive a new test set

for modulo 2n adders. In a modulo 2n adder, the carry at bit

position i is given by

ci ¼ gi þ
Xiÿ1

j¼0

Yi
k¼jþ1

pk

 !
gj;

for 0 � i � nÿ 2.
For testing the half sum functions, since they consist of

XOR gates, we need to apply all four input combinations for

every pair of bits. The propagation of possible fault effects

on them, to the adder’s outputs, is not a problem since they

are connected to the XOR gates at the adder’s outputs and

the output of an XOR gate changes whenever either of its

inputs change. According to this, the test set below should

be applied for every pair of bits:

O
Pa
Pb
G

��������
��������: ð1Þ

The generate functions are implemented by AND gates,

which require that, at each pair of input bits, the following

tests are applied:

Pa
Pb
G

������
������:

Fault effects from these tests must be propagated through

the carry computation functions. One way to achieve this is

to propagate a fault effect on gi to ci, by forcing the other

product terms in the function of ci to zero. This, however,

cannot be achieved by controlling pi, but by ensuring that

there is no carry-in at the ith bit position. For example, the

equation for c2 is given by c2 ¼ g2 þ p2 � g1 þ p2 � p1 � g0. For

propagating fault effects of g2 to c2 (equivalently to s3), the

terms p2 � g1 and p2 � p1 � g0 should be at zero. Since p2 cannot

be set to zero independently of g2, we require that both g1

and p1 � g0 are at zero. Note that, since g0 ¼ c0, fault effects at

g0 do not cause any propagation problems. In our notation,

the above mean that each bit position 1 � i � nÿ 2ð Þ needs

the tests (the tests for bit position 0 have already been

considered in (1)):

Paÿ
Pbÿ
Gÿ

������
������: ð2Þ

In a similar way, the pi functions require the tests O½ �,
Pa½ �, and Pb½ �, but, for propagating fault effects on them to ci,

a carry-in is required. So, the following tests for each bit

position i, 1 � i � nÿ 2ð Þ, are required:

Oþ
Paþ
Pbþ

������
������: ð3Þ

For showing how the required tests for the carry functions

can be derived, we assume a modulo 32 adder. The most

significant carry function in this adder is given by

c3 ¼ g3 þ p3 � g2 þ p3 � p2 � g1 þ p3 � p2 � p1 � g0. For testing c3,

we need to test each product term and propagate possible

faults on them. We present below the required tests for this

in terms of the inputs at the four least significant bit pairs of

the adder:

. g3 requires the application of G �X3½ � and G �X3
� �

. In
order to propagate the fault effects to c3, the other
terms should be set to 0 by the vectors P �X3

� �
or

P � ÿX3½ �. Merging both the sensitization and the
propagation conditions yields the complete test for
the g3 term:

G � ÿX3

½O �X3� or ½P � ÿX3�

���� ����;
. The term p3 � g2 requires the application of

P �G �X2½ �, P �G �X2
� �

, and P �G �X2
� �

. In order
to propagate the fault effects, the other terms should
be 0. Setting g3 to 0 requires G �X3

� �
, while setting

p3 � p2 � g1 and p3 � p2 � p1 � g0 to 0 requires P 2 �X3
h i

or
P 2 � ÿX2½ �. So, a complete test for the term p3 � g2 is:

½P �G � ÿX2�
½P �O �X2� or ½P 2 � ÿX2�

½O �G �X2�

������
������;

. Working the same way, a complete test for the term
p3 � p2 � g1 is:

½P � P �G �G�
½P � P � P �G� or ½P � P �O �X�

½P �O �G �X�
½O � P �G �X�

��������
��������;

and
. A complete test for the last term is:

½P � P � P �G�
½P � P � P �G�
½P � P �O �G�

½P �O � P �G� or ½P �O �G �G�
½O � P � P �G�

����������

����������
:

For finding a complete test set for c3, one needs to combine

the test sets derived above for each of its terms. Obviously,
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all the second vectors of each term’s test set can be

combined into a single test P � P � P �G
� �

. Moreover, the

last vector of each term’s test set can be combined in a single

vector, that is, O �G �G �G½ �. Therefore, a minimum test set

for c3 is:

(4)

Following a similar procedure for c2 and c1, we can see

that all the tests required for them are covered by the test set

derived for c3, which is therefore sufficient for all the carry

functions of a modulo 32 adder. Moreover, since c2 is the

most significant carry of a modulo 16 adder, it becomes

apparent that (4) is also a superset of the test set for the

carry functions of a modulo 16 adder. In the general case of

a modulo 2n adder, all tests required for the carry functions

are covered by the tests for cnÿ2.

The pattern shown in (4) can be extended for deriving

the test set required for testing the carry functions in a

modulo 2n adder which will have the form:

(5)

A complete test set for a modulo 2n adder can be derived

by merging the set (5) with (1), (2), and (3). One possible test

set with 2� n vectors is:

3.2 Modulo 2n ÿ 1 Inclusive-OR Adder Test Set
Derivation

As has been shown in [3] for CLA implementations and

in [4] for parallel-prefix implementations, a modulo 2n ÿ 1

CLA adder follows a structure similar to that of an

integer adder, but with modified carry functions. More

specifically, the carry function at bit position i,

ÿ1 � i � nÿ 2ð Þ, is given by [3]

ci ¼ g nþij jn þ
Xnÿ2

j¼0

Ynÿ1

k¼jþ1

p kþiþ1j jn

 !
g jþiþ1j jn :

In this paper, we consider inclusive-OR modulo 2n ÿ 1

adders designed either with a single CLA level [3] or as

parallel-prefix [4]. A modulo 2n ÿ 1 adder has neither a

carry input nor a carry output; however, the carry

computed at the most significant bit position is XOR-ed

with the half-sum at bit 0 for forming the least significant

sum output.
The test sets given in (1), (2), and (3) are required at each

pair of input bits both for sensitizing faults on, respectively,

the half-sum, the generate, and the propagate functions,

and for propagating possible fault effects through the carry

computation circuitry. Consider now the case that n ¼ 4. In

this case, the carries in the modulo 15 adder are given by:

cÿ1 ¼ g3 þ p3 � g2 þ p3 � p2 � g1 þ p3 � p2 � p1 � g0

c0 ¼ g0 þ p0 � g3 þ p0 � p3 � g2 þ p0 � p3 � p2 � g1

c1 ¼ g1 þ p1 � g0 þ p1 � p0 � g3 þ p1 � p0 � p3 � g2

c2 ¼ g2 þ p2 � g1 þ p2 � p1 � g0 þ p2 � p1 � p0 � g3:

We can observe that:

. The equations are derived in a cyclic manner,
therefore, if one knows a test set for ck, a test set
for any of the rest of the carry functions can be
devised by left/right rotations of every vector in the
test set of ck.

. In a modulo 2n ÿ 1 adder, the carry function at each
bit i has a form similar to that of the most significant
carry function of a modulo 2nþ1 adder. In the above
example, this means that each carry of the modulo 15
adder has a similar form as c3 of the modulo 32
adder.

By the above, utilizing test set (4), we can derive the test

sets required for each carry function:
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The above four test sets can be merged into a single test

set for all the carry functions as follows:

. The vector P � P � P � P½ � is used to replace all first
vectors.

. In the second group of vectors, all “don’t cares” are
assumed as P and therefore only the vectors
P � P � P �G½ �, P � P �G � P½ �, P �G � P � P½ �, a n d
G � P � P � P½ � are required.

According to the above, a test set for all carry functions of a

modulo 15 adder is:

(6)
By extrapolating the above pattern, it is possible to

derive the test set required for testing the carry functions of

any modulo 2n ÿ 1 adder, which will have the form:

(7)
The latter shows that n2 þ 1 vectors are required for testing
the carry computation unit of a modulo 2n ÿ 1 adder. The
cardinality of the derived test set shows that a modulo 2n ÿ
1 adder compared to a modulo 2n adder or an integer adder
is a far harder to test circuit. By the way that the above
vectors were derived, it is also clear that (7) is a superset of
the test set required for testing the carry function at the
most significant bit of a modulo 32 adder. In general, a test
set for the carry functions of a modulo 2n ÿ 1 adder is also a
test set of the carry functions of a modulo 2nþ1 adder which,
according to the discussion of the previous subsection, is a
superset of the test set for the carry functions of a modulo 2n

adder. Moreover, by observing the form of the vectors of
(7), we can see that extracting any subset of k bit positions in
order will lead to a reduced width test for the carry
functions of a modulo 2k ÿ 1 adder, with k < n.

3.3 Formal Test Set for an RNS Adder

A formal test set for testing an RNS adder for the moduli set
2n; 2n ÿ 1; 2k ÿ 1; 2l ÿ 1; . . . , with l < k < n, according to the
discussion in the previous subsection, can be obtained by
merging the test sets indicated in (1), (2), (3), and (7). One
possibility that leads to n2 þ 2 vectors is:

(8)

Example 1. Consider an RNS adder based on the moduli
24; 24 ÿ 1; 23 ÿ 1

 �

. Suppose that x3x2x1x0 and y3y2y1y0,
w3w2w1w0, and z3z2z1z0 and g2g1g0 and f2f1f0 are the
operands of the modulo 24, the modulo 24 ÿ 1, and the
modulo 23 ÿ 1 addition channels, respectively. Then, a
common test for parallel testing of the above addition
channels is given in Table 1. The gray shaded vectors of
Table 1 are not required for testing the modulo 23 ÿ 1
adder.

4 PROPOSED BIST SCHEME

In this section, we introduce a test-per-clock BIST scheme
that applies the test set derived earlier for testing all the
channels of the RNS adder. Scalable test generators for the
case of inclusive-OR CLA integer adders have been
presented in [15]. However, the generators of [15] cannot
be used in our case since they are capable of producing
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O nð Þ vectors, whereas, in our case, we need O n2ð Þ vectors,

for testing the modulo 2n ÿ 1 adder. Fig. 1 presents a block

diagram of the proposed test-per-clock BIST scheme.
The proposed BIST circuitry is composed of the following:

1. Modifications of the input buffers of the adders in

order to transform them, in test mode, into shift

registers. During test mode, these registers only

perform a one bit right rotation. nÿ k flip-flops are

added at each input buffer of each modulo 2k ÿ 1

adder, with k < n, in order to form an n-bit shift

register. In the most common case, an RNS adder

consists of only three channels, a modulo 2n adder, a

modulo 2n ÿ 1 adder, and a 2nÿ1 ÿ 1 adder, implying

that only two flip-flops need to be inserted in the

most common case. When test mode is entered, the

left register of each channel is initialized to 111...111

and the right register to 000...001.
2. A control module, that generates three signals, t1, t2,

and Test_Complete. The first two signals are used to

conditionally complement the value of the bit that is

shifted back into each register. t1 is used to occasion-

ally toggle the bit that is shifted into the left register of

each channel, whereas t2 is used for the same reason

and the right registers. The control module is

composed of a test vector counter and combinational

logic that decodes the states of the test vector counter

and produces t1, t2, and Test_Complete. Signal t1

should be 1 at the fourth, fifth, . . . , nþ 2ð Þth cycles,

at the 2nþ 2ð Þth and the 2nþ 3ð Þth cycles, and at the

k nþ 1ð Þth cycle with 3 � k � n. t2 should be 1 at the

second, third, . . . , nþ 2ð Þth cycles, at the 2nþ 3ð Þth
cycle, and at the k nþ 1ð Þ and k nþ 1ð Þ þ 1 cycles with

3 � k � n. We observe that t1 is at 1 in the vast majority

of test cycles that t2 is also at 1, so we conclude that

some of the logic that decodes the test vector counter

states is shared among the implementations of t1 and

t2. Test_Complete is asserted at the end of the

n2 þ 2nð Þth cycle. The control module can be easily

described in HDL and synthesized for different

values of n.

3. Modifications of the adders’ output buffers so as, in

test mode, to behave as Multiple Input Signature

Analyzers (MISRs).
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Fig. 1. RNS adder with the proposed BIST scheme.



The vectors produced by the proposed BIST are

summarized in Table 2. Comparing Table 2 and (8), it is

obvious that the test vectors of (8) are included in the

vectors produced by the proposed test pattern generator.

The shaded vectors of Table 2 are vectors produced by the

proposed BIST scheme that do not belong to the set defined

by (8). The required n2 þ 2 vectors are applied by the

proposed BIST scheme in n2 þ 2n cycles. A counter of

log2 n
2 þ 2nð Þ bits is therefore required in the BIST control

module of Fig. 1.

Example 2. Consider the proposed BIST for a three channel
RNS adder based on the moduli 24, 24 ÿ 1, and 23 ÿ 1.
Table 3 presents the input buffers’ contents along with
the t1 and t2 signals’ values. Comparing Table 3 and
Table 1, one can easily verify that the vectors required for
testing the modulo 16, 15, and 7 adders are well within
the test vectors provided by the BIST scheme given in
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TABLE 2
Test Sequence Produced by the Proposed BIST

Shaded vectors do not belong to the formal test set given by (8).



Fig. 1. The gray shaded vectors of Table 3 are those

vectors produced by the proposed BIST that do not

belong to the formal test set indicated by (8).

5 BIST EVALUATION AND COMPARISONS.

In this section, we compare the proposed BIST against

ROM and FSM-based BIST schemes as well as against

pseudorandom LFSR-based BIST schemes.
For embedding the test set provided by an ATPG tool, a

designer may either design a TPG as a finite state machine

or store the test patterns in an embedded ROM and

successively retrieve them using a ROM address counter.

We will denote these alternatives as FSM_BIST and

ROM_BIST, respectively.
In the pseudorandom LFSR-based BIST schemes, we

consider that the input buffers of each addition channel are

modified to function, in test mode, as a single distinct LFSR.

Two distinct cases are investigated regarding the test

completion signal:

1. The test is complete when the channel that requires
the largest number of LFSR states for achieving
100 percent precompaction fault coverage has
received all required test vectors (we will hereafter
refer to this scenario as Single_Check) and

2. Each channel’s LFSR and MISR freezes when all
states required for 100 percent fault coverage before
compaction have appeared. We will hereafter refer
to this scenario as Distinct_Checks. This scheme has
less energy consumption than the first one.

In order to find a seed for each LFSR capable of ensuring

short pseudorandom sequence for achieving 100 percent

fault coverage we used the optimization procedure de-

scribed in [16]. One hundred percent precompaction fault

coverage was targeted.
For our comparisons, we use as metrics:

1. the area overhead imposed by each BIST scheme,
2. the postcompaction fault coverage (PCFC) attained,

and
3. the test application time in number of test vectors.

Since an RNS adder is usually embedded in a larger circuit,

its inputs and outputs are not accessible by the primary

inputs and outputs of the chip. For applying a test set in

such embedded circuits, one usually relies on scan paths.

Therefore, for evaluating the hardware overheads imposed

by the different BIST schemes, we use as a basis a scheme in

which the flip-flops of the input and output registers of the

RNS adder are chained together in a single scan path.
We examined three different RNS adders. These are

defined, respectively, by the moduli 28; 28 ÿ 1; 27 ÿ 1

 �

,

216; 216 ÿ 1; 215 ÿ 1

 �

, and 232; 232 ÿ 1; 231 ÿ 1

 �

. We will

hereafter refer to them as the 28; 28 ÿ 1; 27 ÿ 1

 �

, the

216; 216 ÿ 1; 215 ÿ 1

 �

, and the 232; 232 ÿ 1; 231 ÿ 1

 �

RNS

adder, respectively.
For getting realistic measures of the area overhead, we

described the examined RNS adders in HDL and used the

Synopsys1 tools driven by the UMC-VST 25 implementa-

tion technology (0.25 �m, up to 5-metal layers, 1.8/3.3 V) for

our implementations. Our targeted operating frequency

was set to 200 MHz, for typical process parameters and

VERGOS ET AL.: DETERMINISTIC BIST FOR RNS ADDERS 903

TABLE 3
Test Patterns Generated by the Proposed BIST for Example 2



irrespective of the insertion or not of any Design-For-
Testability (DFT) hardware.

Table 4 presents the area overhead of an RNS adder

supported by the examined BIST schemes as a percentage of

the implementation area of an RNS adder with a single scan

path. In the case of ROM_BIST, we can implement the ROM

either as a memory array (with one transistor per bit) or as a

combinational circuit. Because of the small ROM sizes

required in the examined adders, the latter approach gives

the best area results and is indicated in Table 4. As we can

see from Table 4, both FSM_BIST and ROM_BIST require

excessive implementation areas. In all examined cases, the

hardware required for implementing FSM_BIST is larger

than the RNS adder itself. Although smaller, the imple-

mentation area required by ROM_BIST is also very large.

The required area for implementing ROM_BIST in the

232; 232 ÿ 1; 231 ÿ 1

 �

adder case raises to 78 percent of an

RNS adder with a single scan path, compared to 15.4 percent

of the proposed BIST. The values in Table 4 reveal that the

proposed BIST scheme requires an implementation area

similar to that of the LFSR-based approaches for all

examined RNS adders.

In order to measure the PCFC, we used a custom

developed fault simulator. In the 216; 216 ÿ 1; 215 ÿ 1

 �

and

232; 232 ÿ 1; 231 ÿ 1

 �

adder cases, we assume that each

channel’s output register is transformed during test into a

distinct MISR. Since, under this assumption, in the

28; 28 ÿ 1; 27 ÿ 1

 �

adder case, none of the considered

schemes leads to complete 100 percent PCFC, we assume

that, in this case, the three output registers of the RNS adder

are converted into a single MISR, increasing in this way the

degree of the primitive polynomial of the MISR. The results

obtained for the PCFC and test length are presented in

Table 5. Each entry in Table 5, excluding the PCFC

percentage of the 28; 28 ÿ 1; 27 ÿ 1

 �

adder, is an ordered

triplet, whose elements refer to the modulo 2n, the modulo

2n ÿ 1 and the modulo 2nÿ1 ÿ 1 channel, respectively. The

results of Table 5 show that all schemes, except the

FSM_BIST/ROM_BIST schemes in the case of the

28; 28 ÿ 1; 27 ÿ 1

 �

adder, achieve 100 percent PCFC in all

examined cases.

Table 5 also reveals that the test time required by the

proposed BIST is significantly less than that required by

pseudorandom BIST schemes. LFSR-based schemes require

95.83 percent more time than the proposed BIST to test the

216; 216 ÿ 1; 215 ÿ 1

 �

adder. This percentage grows to

26,967 percent when the 232; 232 ÿ 1; 231 ÿ 1

 �

adder is

considered. In the case of LFSR-based schemes, a significant

amount of time is also required for finding an initial seed

for the LFSRs so as to minimize the number of states

required for achieving 100 percent fault coverage. In the
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TABLE 5
Fault Coverage and Test Times

TABLE 4
Area Comparisons



case of the 216; 216 ÿ 1; 215 ÿ 1

 �

adder, for finding the three

initial LFSR seeds, 31 minutes of CPU time (on a Pentium III,

500 MHz machine) were required. The CPU time required

raised to more than eight hours in the case of the

232; 232 ÿ 1; 231 ÿ 1

 �

adder.

6 CONCLUSIONS

Rapid test-pattern generation contributes to meet the ever-

shrinking time-to-market. To this end, in this paper, we

derive a formal test set for RNS adders consisting of n2 þ 2

vectors. This set can be used for parallel testing of addition

channels that use the moduli 2n; 2n ÿ 1; 2k ÿ 1; 2l ÿ 1; . . . ,

with l < k < n as their base. The test set was derived based

on the adder’s equations and can therefore be equally well

applied to full CLA and parallel-prefix implementations.

Moreover, it is parameterized and independent of a specific

implementation library; therefore, it is totally reusable.

A test-per-clock BIST scheme has also been proposed,

that applies the derived test set in n2 þ 2n cycles. Experi-

mental evidence on three benchmark RNS adders shows

that the proposed BIST scheme requires an implementation

area close to that of LFSR-based schemes, whereas it is far

more efficient than the latter in terms of test application

time. BIST solutions based on embedding the test set

provided by Automatic Test Pattern Generation (ATPG)

tools by using a ROM or by designing a TPG as an FSM

require too much area for their implementation.
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