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Handling zero in diminished-one modulo 2
n
+1 adders

CONSTANTINOS EFSTATHIOUy, HARIDIMOS T. VERGOS*z and
DIMITRIS NIKOLOSz

Zero treatment in diminished-one modulo 2nþ 1 addition has traditionally been
performed separately, leading to slow and area-consuming implementations. To
overcome this, on the basis of an enhanced number representation used previously,
we introduce novel carry look ahead and parallel-prefix architectures for
diminished-one modulo 2nþ 1 adders that can also handle operands equal to 0.
Translators for the new representation are also given.

1. Introduction

Modulo 2nþ 1 arithmetic appears to play an important role in many applica-
tions. The Residue Number System (RNS) (Sonderstrand et al. 1986, Bayoumi et al.
1987, Elleithy and Bayoumi 1992, Koren 2002) is one of the first application fields. A
set of L moduli, say hm1,m2,. . . ,mLi, that are pair-wise relative prime, is used to
define an RNS. Any integer X, with 0 � X<M, whereM ¼ m1 �m2 � 	 	 	 �mL, has
a unique representation in the RNS, given by the L-tuple of residues
X ¼ x1; x2; . . . ; xLð Þ, where xi ¼ X modmi. An RNS operation, say �, is defined
as z1; z2;. . . ; zLð Þ ¼ x1; x2; . . . ; xLð Þ � y1; y2; . . . ; yLð Þ, where zi ¼ xi � yið Þmodmi. In
most RNS applications � is addition, subtraction or multiplication. Since the com-
putation of zi depends only upon xi, yi and mi, each zi is computed in parallel in a
separate arithmetic unit, often called a channel. Moduli choices of the form
2n; 2n 
 1; 2n þ 1
� �

(Jenkins and Leon 1977) have received significant attention
because they offer very efficient circuits in the area � time2 product sense
(Paliouras and Stouraitis 1999). Addition in such systems is performed using three
channels that in fact are a modulo 2n
 1 (equivalently one’s complement), a modulo
2n and a modulo 2nþ 1 adder (Sonderstrand et al. 1986, Koren 2002).
Modulo 2nþ 1 adders are also utilized as the last-stage adders of modulo 2nþ 1

multipliers. Modulo 2nþ 1 multipliers find applicability in pseudorandom number
generation (Lehmer 1951), cryptography (Lai and Massey 1990, Curiger 1993,
Zimmermann et al. 1994) and in the Fermat number transform, which is an effective
way to compute convolutions (Ma 1998).
The addition delay in an RNS application which uses the 2n; 2n 
 1; 2n þ 1

� �
moduli is dictated by the modulo 2nþ 1 channel, since this requires (nþ 1)-bit
wide operands. To overcome the problem of dealing with (nþ 1)-bit wide circuits
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for the modulo 2nþ 1 channel, the diminished-one number system (Leibowitz 1976)
has been adopted in several residue number system implementations, for example
Jenkins (1979, 1982). In this system each number X is represented by X�

¼ X 
 1,
with X�

2 ½0; 2n 
 1�. Therefore the adoption of the diminished-one number system
leads to modulo 2nþ 1 adders and multipliers of n bits wide operands (Zimmermann
1997, 1999, Efstathiou et al. 2001, Vergos et al. 2001, 2002). Implementations of
diminished-one adders that are as fast as the modulo 2n and modulo 2n
 1 ones have
been reported in Vergos et al. (2001, 2002). However, a new problem arises: the
special treatment required for operands equal to 0. The previous proposals on
diminished-one adders (Zimmermann 1997, 1999, Efstathiou et al. 2001, Vergos
et al. 2001, 2002) totally ignore this subject with the exception of Agrawal and
Rao (1978). To overcome the problem of zero operands, Agrawal and Rao (1978)
proposed to adopt in their representation a zero indication bit and showed how
Carry Look Ahead (CLA) adders that can handle zero operands can be imple-
mented. CLA adders that require one or two cycles have been proposed in
Agrawal and Rao (1978). However, the single cycle CLA adders proposed in
Agrawal and Rao (1978) do not handle correctly either the modulo 2nþ 1 carries
or the zero indication bit of the result (Efstathiou et al. 2002).
In this paper, we adopt a number representation similar to that of Agrawal and

Rao (1978). We present three architectures for modulo 2nþ 1 addition, that can also
handle zero operands. Our CLA architecture requires a single addition cycle and has
been derived by engaging the output carry equation into the CLA unit. Our parallel-
prefix adders with a fast carry increment stage have the same logical depth and hence
speed as well as the same area complexity as the diminished-one adders with a carry
increment stage proposed in Zimmermann (1997, 1999) that cannot handle zero
operands. To further decrease the number of required prefix levels, we propose a
totally parallel-prefix architecture that cancels the need for a separate carry incre-
ment stage by performing carry recirculation at each prefix level (Kalamboukas et al.
2000, Vergos et al. 2001, 2002). Our totally parallel-prefix adders offer the same
logical depth and complexity as the fastest modulo 2n (Kogge and Stone 1973,
Ladner and Fischer 1980), modulo 2n
 1 (Kalamboukas et al. 2000) and
diminished-one adders (Vergos et al. 2001, 2002), with the extra advantage of
handling zero operands. Converters between the adopted representation and the
modulo 2nþ 1 binary number representation are finally given.

2. Problem definition

Suppose that a number X, with 0 � X � 2n, is represented by nþ 1 bits,
as xzX

�
¼ xzx

�
n
1x

�
n
2 . . . x

�
1x

�
0, where xz is the zero indication bit and X* is the

diminished-one representation of X; that is:

xz ¼
0; if X 6¼ 0

1; if X ¼ 0

(
and X�

¼
X 
 1; if X 6¼ 0

0; if X ¼ 0

(

Obviously, X ¼ X�
þ xz (the overbar notation is used for logical negation). A similar

representation was adopted in Agrawal and Rao (1978). If we decide to ignore the
representation of 0 and concentrate only on the X* part, then efficient n-bits wide
adders can be constructed as proposed in Zimmermann (1997, 1999), Efstathiou et al.
(2001) and Vergos et al. (2001, 2002). However, the need to treat 0 distinctly will
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result in a circuit like the one shown in figure 1. At the output of the adder a row of
multiplexers is added in order to select the correct output. When none of the oper-
ands is zero (both az and bz are 0), the output of the adder is propagated. When one
of the two operands is zero, the other operand is allowed to propagate. When both
operands are 0, the all-0s word is propagated. Logic also needs to be added for
computing the zero indication bit sz of the result.
Obviously, the adders that follow the architecture of figure 1 are not the best

choice in RNS applications, since the delay of the multiplexers makes the delay of
the modulo 2nþ 1 channel greater than that of channels of the form 2n and 2n
 1.
The required implementation area is also increased substantially in comparison with
the other channels.

3. The new proposed modulo 2nþ 1 adders

In this section we propose CLA and parallel-prefix adders with embedded treat-
ment of zero operands. We first analyse the logic of sz and S

*, for the adopted
number representation. Let |X|Y denote the modulo Y residue of X.
Relation Aþ Bj j2nþ1 ¼ 0, with 0 � A;B � 2n, implies that A¼B¼ 0 or that

A,B 6¼ 0 and Aþ B ¼ 2n þ 1, or equivalently that A¼B¼ 0, or A;B 6¼ 0 and
A�

þ B�
¼ 2n 
 1. Therefore, the zero indication bit, sz, of the result should be one

when either both operands are 0, or when both operands are non-zero but their
diminished-one parts are complementary. These two cases are expressed by the
following relation for sz:

sz ¼ az 	 bzð Þ _ az 	 bz 	 Pn
1
� �

¼ az 	 bzð Þ _ az _ bzð Þ 	 Pn
1
� �

ð1Þ

where Pn
1 ¼ pn
1 	 pn
2 	 	 	 	 	 p0 and pi ¼ a�i � b�i , with i ¼ 0;1; . . . ; n
 1, and the
notations 	;_;� are used for the logical AND, OR and exclusive-OR operations
respectively. An implementation of (1) is presented in figure 2. In some adders
(often referred as exclusive-OR adders) the carry propagate signals are defined as
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Diminished - One
Modulo 2n+1 Adder

A* B*

sz

n 4->1 multiplexers

A* B*
0 0 0 0

az

bz

S*

Logic for
computing sz

az bz

Figure 1. The architecture of an adder that treats 0 as a special case.



the exclusive-OR of corresponding operands’ bits. In these adders, the logic required
for producing Pn
 1 is already present in the adder. On the other hand, the logic
producing Pn
 1 is required in inclusive-OR adders, that is, in adders whose carry
propagate signals are defined as the inclusive-OR of corresponding operands’ bits.
For the S* part of the result we can observe that:

� If A* and B* are both non-zero, then according to Zimmermann (1997, 1999):

S� mod 2n þ 1ð Þ ¼
A�

þ B�
ð Þ mod 2n; if A�

þ B�
� 2n

A�
þ B�

þ 1 otherwise

(

or, equivalently, in this case S*can be computed by adding the complement of
the carry output (cout) of the modulo 2

n addition of A* and B* back to the sum.
Since in this case az¼ bz¼ 0, we can, instead of cout, add ðaz _ bz _ coutÞ.

� If one or both operands are zero, ðaz _ bz _ coutÞ ¼ 0 and S* is equal to the
modulo 2n sum of A* and B*. That is, in this case S* can also be computed by
a modulo 2n adder with a carry input of ðaz _ bz _ coutÞ.

According to the above analysis, the computation of the diminished-one part of
the result, S*, can in all cases, be carried out by a modulo 2n adder whose carry input
is connected to a circuit implementing the expression F ¼ ðaz _ bz _ coutÞ. However,
such a direct connection will lead to an oscillating and thus slow circuit. One
straightforward way of avoiding oscillations is to compute two possible sums in
two distinct modulo 2n adders and then use function F for choosing between the
two sums. However, since this arrangement requires two sets of n-bit adders and
n multiplexers, it increases the required implementation area significantly. In the
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Figure 2. The implementation of sz.



following we propose CLA and parallel-prefix architectures that do not suffer from
oscillations.

3.1. CLA adders

Let gk ¼ a�k 	 b
�
k and pk ¼ a�k � b�k denote the carry generate and propagate terms

respectively. The carries ck, with 
1 � k � n
 1 (c
1 is the input carry, while cn-1
the output carry) in an n-bit CLA adder are computed by unfolding the recursive
equation ck ¼ gk _ pk 	 ck
1 and, in parallel, implementing the resulting equations.
For the inverted carry at each bit position ck, we have

ck ¼ gk _ pk 	 ck
1 ¼ gk 	 pk _ ck
1ð Þ ¼ gk 	 pk _ gk 	 ck
1 ¼ tk _ gk 	 ck
1 ð2Þ

where tk ¼ gk 	 pk ¼ a�k _ b
�
k. The sum bits are given by sk ¼ pk � ck
1, for

0 � k � n
 1.
Dedicated CLA architectures that do not suffer from oscillations are derived in

the following by engaging F ¼ ðaz _ bz _ coutÞ in (2) and simplifying the resulting
equations (Agrawal and Rao 1978, Efstathiou et al. 1994, Vergos et al. 2002). This
procedure will provide us with the equations of the carries for the modulo 2nþ 1
addition, hereafter denoted by c�i , with 
1 � i � n
 2. Using (2), for the least
significant carry, we get

c�
1 ¼ F ¼ az _ bz _ cn
1 ¼ az _ bz
� �

	 cn
1 ¼ az _ bz
� �

	 ðtn
1 _ gn
1 	 cn
2Þ

¼ az _ bz
� �

	 tn
1 _ gn
1 	 tn
2 _ gn
2 	 cn
3ð Þð Þ

¼ az _ bz
� �

	 tn
1 _ gn
1 	 tn
2 _ gn
1 	 gn
2 	 cn
3ð Þ ¼ 	 	 	

¼ az _ bz _ tn
1
� �

_ az _ bz _ gn
1
� �

	 tn
2 _ az _ bz _ gn
1
� �

	 gn
2 	 tn
3 _ 	 	 	 _ az _ bz _ gn
1
� �

	 gn
2 	 	 	 	 	 g2 	 g1 	 g0 ð3Þ

Using (3) and the recursive equation ck ¼ gk _ pk 	 ck
1 we can then derive the rest of
the carries’ equations. For k¼ 0 and by substituting c�
1 by (3), we get

c�0 ¼ g0 _ p0 	 c
�

1

¼ g0 _ p0 	 az _ bz _ tn
1
� �

_ az _ bz _ gn
1
� ��

	tn
2 _ 	 	 	 _ az _ bz _ gn
1
� �

	 gn
2 	 	 	 g2 	 g1 	 g0
�

ð4Þ

Given that g0 _ p0 	 gn
1 	 gn
2 	 	 	 	 	 g2 	 g1 	 g0 ¼ g0 _ p0 	 gn
1 	 gn
2 	 	 	 	 	 g2 	 g1 and
that p0 	 gn
1 	 gn
2 	 	 	 	 	 g2 	 g1 _ p0 	 gn
1 	 gn
2 	 	 	 	 	 g2 	 t1 ¼ p0 	 gn
1 	 gn
2 	 	 	 	 	 g2	
g1, (4) becomes

c�0 ¼ g0 _ p0 	 az _ bz _ tn
1ð Þ _ p0 	 az _ bz _ gn
1ð Þ 	 tn
2_

	 	 	 _ p0 	 az _ bz _ gn
1ð Þ 	 gn
2 	 	 	 	 	 g2 	 g1

We then can use c�0 for computing c
�
1, c

�
1 for computing c

�
2 and so on, up to

c�n
2 ¼ gn
2 _ pn
2 	 gn
1 _ 	 	 	 _ pn
2 	 pn
3 	 	 	 	 	 p1 	 g0

_ pn
2 	 pn
3 	 	 	 	 	 p1 	 p0 	 az _ bz _ gn
1ð Þ

Diminished-one modulo 2nþ 1 adders 137



The above equations sum up to the following general formula, which defines
our proposed one-level CLA diminished-one modulo 2nþ 1 architecture:

c�i ¼ g�nþij jn
_
Xn
2
j¼0

Yn
1
k¼jþ1

p�kþiþ1j jn

 !
g�jþiþ1j jn

where

p�j ¼

gj; if n
 1> j > iþ 1

az _ bz _ gj; if j ¼ n
 1

pj; otherwise

8><
>: and g�j ¼

tj; if n
 1> j > iþ 1

az _ bz _ pj , if j ¼ n
 1

gj, if j ¼ iþ 1

gj, otherwise

8>>>><
>>>>:

ð5Þ

3.2. Parallel-prefix adders with carry increment stage

To solve the problem of oscillations in parallel-prefix adder architectures, a first
solution is to use prefix architectures with fast carry processing as proposed in
Abraham and Gajski (1980) and then utilize the theory developed in Zimmermann
(1997, 1999), for re-entering the ðaz _ bz _ coutÞ expression as the carry input. The
resulting architecture is outlined in figure 3. Figure 4 presents the gate-level imple-
mentations of the operators used in figure 3. The prefix computation unit can be
designed using any of the proposed prefix algorithms (Kogge and Stone 1973,
Ladner and Fischer 1980, Brent and Kung 1982, Knowles 2001, Beaumont-Smith
and Lim 2001). The notations Gi and Pi are used in figure 3 to denote group generate
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a*
1b*

1

Prefix Computation

a*
n-1b*

n-1

s*
n-1

c*n-3 c*0
c*n-2 c*1

cout = Gn-1

G0,P0c*-1
G1,P1Gn-2,Pn-2

Pn-1

sz s*
n-2 s*

1 s*
0

bz az

b*
n-2 a*

n-2
b*

0 a*
0

Figure 3. The architecture of a parallel-prefix adder with a carry increment stage.



and group propagate signals of bits 0, 1, . . ., i. That means that Gi and Pi are
respectively the first and the second members of the group relation (assuming that
carry input cin¼ 0):

Gi;Pið Þ ¼
g0; p0ð Þ, if i ¼ 0

gi; pið Þ � Gi
1;Pi
1ð Þ; if 1 � i � n
 1

(

and the operator � is defined according to Brent and Kung (1982) as
ðgm; pmÞ � ðgk; pkÞ ¼ ðgm _ pm 	 gk; pm 	 pkÞ. In an integer adder, obviously the carry
at position i is ci¼Gi.
Comparing the architecture of figure 3 against the parallel-prefix architecture

with a carry increment stage proposed in Zimmermann (1997, 1999), for
diminished-one modulo 2nþ 1 addition it is obvious that both architectures have
similar area and time complexities. However, the architecture of figure 3 in parallel
offers treatment of zero operands.
The number of prefix levels required by the architecture of figure 3 is one more

than those of the fastest modulo 2n (Kogge and Stone 1973, Ladner and Fischer
1980), modulo 2nþ 1 (Kalamboukas et al. 2000) and modulo 2nþ 1 diminished-one
adder architectures (Vergos et al. 2001, 2002), because the latter do not require a
carry increment stage. Therefore, in an RNS application that uses the
2n;2n 
 1;2n þ 1
� �

moduli set, the architecture of figure 3 limits the maximum execu-
tion speed of the system.

3.3. Totally parallel-prefix adders

Instead of having a dedicated single stage for the re-entering carry, it has been
proposed in Kalamboukas et al. (2000) and Vergos et al. (2001, 2002) to perform
carry recirculation at each existing prefix level. In this way the need for an extra carry
increment stage is cancelled, and dedicated totally parallel-prefix adder architectures
result with one less prefix level.
In the case that the re-entering carry is given by the expression ðaz _ bz _ coutÞ,

allowing carry recirculation at each existing prefix level, we can ascertain that
the carries c�i of the modulo 2

n
þ 1 addition are equal to G�

i , where G
�
i is computed
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Figure 4. Gate-level implementations of the operators used in figure 3.



by the prefix equations

G�
i ;P

�
ið Þ ¼

Gn
1;Pn
1ð Þ; if i ¼ 
1

Gi;Pið Þ � Gn
1;iþ1;Pn
1;iþ1
� �

if 0 � i � n
 2

(
ð6Þ

where

� ðG;PÞ is defined to be equal to ðG;PÞ;
� Ga,b and Pa,b, (a> b), are respectively the group generate and propagate signals
for the group a; a� 1; . . . ; b, computed by ðGa;b;Pa;bÞ ¼ ðga; paÞ � ðga�1; pa�1Þ�
	 	 	 � ðgb; pbÞ. Obviously, ðGa;0;Pa;0Þ ¼ ðGa;PaÞ, and

� gn�1 ¼ ða
n�1 	 b
n�1Þ _ az _ bz.

In several cases, the equations indicated by (6) require more than log2 n prefix
levels for their implementation. As shown in Vergos et al. (2001, 2002), these equa-
tions can be transformed into equivalent ones that can all be implemented within
log2 n prefix levels. For the sake of completeness, we present the main idea of the
theory in Vergos et al. (2001, 2002) below.
If ðGx;PxÞ ¼ ðg; pÞ � ðG;PÞ and ðGy;PyÞ ¼ ððt; gÞ � ðG;PÞÞ, then, since Gx ¼

g _ p 	 G ¼ ðg _ p 	 GÞ ¼ ðg 	 ðp _ GÞÞ ¼ ðg 	 p _ gGÞ ¼ ðt _ gGÞ and Gy ¼ ðt _ gGÞ,
we get Gx ¼ Gy. This implies that a carry whose equation is of the form ðg; pÞ�

ðG;PÞ can be equivalently computed by an equation of the form ððt; gÞ � ðG;PÞÞ.
As shown in Vergos et al. (2002) for area-time efficient parallel-prefix modulo
2nþ 1 adder implementations the above transformation should be applied j times
recursively to the equations of the form ðgi; piÞ � 	 	 	 � ðg0; p0Þ � ðGn
1;iþ1;Pn
1;iþ1Þ
produced by (6), until:

n
 1
 i þ j ¼
n; if i >

n

2

 1

n

2
; if i �

n

2

 1

8><
>:

Example. For the implementation of a modulo 17 adder that can also handle zero
operands, from (6) we get the following set of prefix equations :

c�
1 ¼ g3; p3ð Þ � g2; p2ð Þ � g1; p1ð Þ � g0; p0ð Þð Þ

c�0 ¼ g0; p0ð Þ � g3; p3ð Þ � g2; p2ð Þ � g1; p1ð Þð Þ

c�1 ¼ g1; p1ð Þ � g0; p0ð Þ � g3; p3ð Þ � g2; p2ð Þð Þ

c�2 ¼ g2; p2ð Þ � g1; p1ð Þ � g0; p0ð Þ � g3; p3ð Þ;

where g3 ¼ az _ bz _ ða�3 	 b
�
3Þ. We then transform the above into the following

equations that can all be implemented within a prefix tree with a logical depth of 2:

c�
1 ¼ g3; p3ð Þ � g2; p2ð Þ � g1; p1ð Þ � g0; p0ð Þð Þ

c�0 ¼ t0; g0ð Þ � g3; p3ð Þ � g2; p2ð Þ � g1; p1ð Þð Þ

c�1 ¼ g1; p1ð Þ � g0; p0ð Þ � g3; p3ð Þ � g2; p2ð Þð Þ

c�2 ¼ g2; p2ð Þ � g1; p1ð Þ � t0; g0ð Þ � g3; p3ð Þ:

Figure 5 presents the attained implementation along with explanation of newly
introduced operators.
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The number of prefix levels and therefore the delay of the proposed totally
parallel-prefix adders is equal to that of the fastest reported modulo 2n (Kogge
and Stone 1973, Ladner and Fischer 1980), 2n
 1 (Kalamboukas et al. 2000) and
2nþ 1 diminished-one (Vergos et al. 2001, 2002) adders. This makes them highly
applicable in RNS applications. Moreover, their hardware (gates and routing)
complexity is analogous to that of the adders reported in Kalamboukas et al.
(2000) and Vergos et al. (2001, 2002).

4. Translator circuits

4.1. Translator from modulo 2nþ 1 to the proposed representation

Let X ¼ xnxn
1xn
2 	 	 	 x1x0 be a binary number with 0 � X � 2n and
xzX

�
¼ xzx

�
n
1x

�
n
2 	 	 	 x

�
1x

�
0 the targeted representation. The zero indication bit xz

can be computed by

xz ¼ xn _ xn
1 _ ::: _ x1 _ x0 ð7Þ

while

X�
¼

X 
 1; if xz ¼ 0

0; if xz ¼ 1

(
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b*3a*3 a*2
b*2 a*1 b*1

a*0 b*0

s*0s*1
s*2s*3

a*i b*i
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(gi, pi) (ti,  gi)

(Gi,j, Pi,j) (Gk,m, Pk,m)

(Gi,j, Pi,j) o (Gk,m, Pk,m) (Gi,j, Pi,j) o (Gk,m, Pk,m)

az bz

b*n-1

pn-1

(gn-1, pn-1)

a*n-1

az

bz

c*0 c*-1
c*1c*2

Figure 5. Proposed parallel-prefix adder with minimal logical depth.



or, equivalently,

X�
¼ X 
 1þ xz ¼ X þ 2n 
 1þ xz

�� ��
2n
:

The last relation reveals that X* can be computed by a modulo 2n adder that accepts
as inputs the all-1s operand and the n least significant bits of X operand and, as carry
input the xz signal. Assuming an inclusive-OR implementation of the adder, we have
that gi ¼ xi and ti ¼ 1. Therefore, utilizing (7) we obtain that the carry at each
position i is given by

ci ¼ gi _ ti 	 ci
1 ¼ xi _ ci
1 ¼ 	 	 	 ¼ xi _ xi
1 _ 	 	 	 _ x0 _ cin

¼ xi _ xi
1 _ 	 	 	 _ x0 _ ðxn _ xn
1 _ 	 	 	 _ x1 _ x0Þ

The latter relation reveals that the adder required for implementing a translator from
the binary system to the adopted representation is composed of an exclusive-NOR
gate per bit and of a carry computation unit easily implemented as trees of NOR
gates.

4.2. Translator from the adopted representation to binary

Using the notation, introduced, above in this case we have that X ¼ X�
þ xz.

The latter relation reveals that translation to binary can be performed by a simple
incrementer.

5. Conclusions

Several architectures have recently been proposed for diminished-one modulo
2nþ 1 addition. None of these has dealt with the problem of handling zero operands.
All of them propose to treat zero operands separately. Unfortunately, such a treat-
ment leads to slow and area consuming implementations.
In this paper, by utilizing a number representation similar to that of Agrawal and

Rao (1978), we proposed CLA and parallel-prefix adders able also to handle zero
operands. Our CLA adders perform addition in a single cycle and were derived by
engaging the equation of the re-entering carry into the carry computation equations.
The parallel-prefix adders proposed herein, with a carry increment stage offer the same
logical depth and hence speed as well as the same area complexity as the diminished-
one adders with a carry increment stage proposed in Zimmermann (1997, 1999), with
the extra advantage of handling zero operands. The proposed totally parallel-prefix
adders perform carry recirculation at each prefix level and therefore do not need
a separate carry increment stage; their number of prefix levels and therefore their
execution speed is the same as that of the fastest modulo 2n, modulo 2n – 1 andmodulo
2nþ 1 diminished-one adders. Translators between the adopted number representa-
tion and the modulo 2nþ 1 binary system were finally presented.
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