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Abstract—This paper presents two new design methodologies for modulo 2n þ 1 addition in the diminished-one number system. The

first design methodology leads to carry look-ahead, whereas the second to parallel-prefix adder implementations. VLSI realizations of

the proposed circuits in a standard-cell technology are utilized for quantitative comparisons against the existing solutions. Our results

indicate that the proposed carry look-ahead adders are area and time efficient for small values of n, while for the rest values of n the

proposed parallel-prefix adders are considerably faster than any other already known in the open literature.

Index Terms—Modulo 2n þ 1 addition, carry look-ahead addition, parallel-prefix adders, diminished-one number representation, VLSI

adders.
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1 INTRODUCTION

MODULO arithmetic has been used in digital computing
systems for various purposes for many years. In

particular, modulo 2n þ 1 arithmetic appears to play an
important role in many algorithms.

A first application field is in Residue Number Systems
(RNS) [1], [2], [3], [4]. In an RNS based application, every
number X is represented by a sequence of residues
ðX1;X2; . . . ;XMÞ, where Xi ¼ X mod pi. The pis, 1 � i � M,
comprise the base of the RNS and are pairwise relative
prime integers. A two operand RNS operation, suppose },
is defined as

ðZ1;Z2; . . . ;ZMÞ ¼ ðX1;X2; . . . ;XMÞ } ðY1;Y2; . . . ;YMÞ;

where Zi ¼ ðXi } YiÞmod pi. For most RNS applications} is
either addition, subtraction, or multiplication. Since the
computation of Zi only depends upon Xi, Yi, and pi, each Zi

is computed in parallel in a separate arithmetic unit, often
called channel. Moduli choices of the form f2n ÿ 1; 2n; 2n þ 1g
[5] have received significant attention because they offer
very efficient circuits in the area� time2 product sense [6].
Addition in such systems is performed using three channels
that, in fact, are a modulo 2n ÿ 1 (equivalently, one’s
complement), a modulo 2n, and a modulo 2n þ 1 adder
[1], [4]. The addition delay in an RNS application which
uses the above moduli is dictated by the modulo 2n þ 1
channel. The latter means that, if we can cut down the time
required for modulo 2n þ 1 addition, we also cut down the
addition time in an RNS application.

Modulo 2n þ 1 adders are also utilized as the last stage
adder of modulo 2n þ 1 multipliers. Modulo 2n þ 1 multi-
pliers find applicability in pseudorandom number genera-
tion [7], cryptography [8], [9], [10], and in the Fermat

number transform, which is an effective way to compute
convolutions [11].

Leibowitz, in [12], has proposed the diminished-one number
system. In the diminished-one number system, each number
X is represented by X� ¼ X ÿ 1. The representation of 0 is
treated in a special way. Since the adoption of this system
leads to modulo 2n þ 1 adders and multipliers of n bits wide
operands, it has been used for many residue number system
implementations, for example, [13], [14].

Efficient VLSI implementations of modulo 2n þ 1 adders
for the diminished-one number system have recently been
presented in [15], [16]. The adders presented in [15], [16],
although fast, are, according to the comparison presented in
[15], still slower than the fastest modulo 2n adders or the
fastest modulo 2n ÿ 1 adders presented in [17]. Therefore,
their use in an RNS application would still limit the
performance of the system.

In this paper, we derive two new design methodologies
for modulo 2n þ 1 adders in the diminished-one number
system. The first one leads to traditional Carry Look-Ahead
(CLA), while the second to parallel-prefix adder architec-
tures. Using implementations in a static CMOS technology,
we show that the proposed CLA adder design methodology
leads to more area and time efficient implementations than
those presented in [15], [16] for small operand widths. For
wider operands, the proposed parallel-prefix design meth-
odology leads to considerably faster adder implementations
than those presented in [15], [16] and as fast as the integer
or the modulo 2n ÿ 1 architecture presented in [17].

The rest of this paper is organized as follows: The
foundations of speeding up the addition operation are
revisited in the next section. The derivation of our new
architectures is presented in Section 3. Comparative results
that show the efficiency of the proposed architectures
against the existing solutions are presented in Section 4.
Conclusions are given in the last section.

2 FOUNDATIONS

In order to speed up the addition operation, the carry
computation time should be minimized. One solution is to
use CLA adders [4], [18].
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Let A ¼ anÿ1anÿ2 . . . a1a0 and B ¼ bnÿ1bnÿ2 . . . b1b0 be two

n-bit numbers and S ¼ snÿ1snÿ2 . . . s1s0 their sum. For

describing the carry computation problem, two terms are

commonly used:

. the carry generate term, gi ¼ ai � bi and

. the carry propagate term, pi ¼ ai þ bi.
The computation of the carries in the various CLA

implementations is based on the recursive formula

ci ¼ gi þ pi � ciÿ1. If we denote the exclusive-OR operation

by �, the sum bits are given by si ¼ hi � ciÿ1, where hi ¼
ai � bi is the half-sum. (pi may also be defined as

pi ¼ hi ¼ ai � bi, but, since this leads to somewhat slower

implementations, we will not adopt it in this work).
The architecture of every CLA adder is given in Fig. 1.

The implementation of the tu and } operators is presented

in Fig. 2.
The computation of the carries ci can be done in parallel

by the carry computation unit of Fig. 1 by designing it to

implement the formula:

ci ¼ gi þ
Xiÿ1

j¼0

Yi
k¼jþ1

pk

 !
� gj þ

Yi
k¼0

pk

 !
� cin:

However, when the operand length is large, the number

of inputs to the high order gates of the carry computation

unit also becomes quite large. In the case of wide operands,

it is profitable to design the carry computation unit with

more than one level of CLA [18]. Under this approach, at

each level of the carry computation unit, the inputs are

divided into groups, a smaller CLA unit is employed for

each group, and collective CLA units are introduced for

carry computations between groups.
Fig. 3 indicates the block diagram of a two-level CLA

adder. The carry computation unit of this adder is

composed of a Group Propagate and Generate (GPG) unit,

a Between Groups Carry Look-Ahead (BGCLA) unit, and a

Group Carry Look-Ahead (GCLA) unit [18], [19]. The GPG

unit is composed of m ¼ dn=ke subunits. Each subunit

processes k bits of the input operands, except the last, which

may process less if n is not exactly divisible by k. The jth

subunit implements the following equations for the group
generate ðggjÞ and group propagate ðgpjÞ:

ggj ¼ gkjþkÿ1 þ pkjþkÿ1 � gkjþkÿ2 þ . . .þ pkjþkÿ1 � pkjþkÿ2 � . . .
� pkjþ1 � gkj

and

gpj ¼ pkjþkÿ1 � pkjþkÿ2 � . . . � pkjþ1 � pkj;

where 0 � j � mÿ 1. The BGCLA unit implements the
following equations for the group carries (gcj):

gcj ¼ ggj þ
Xjÿ1

t¼0

Yj
f¼tþ1

gpf

 !
ggt þ

Yj
f¼0

gpf

 !
gcÿ1;

where 0 � j � mÿ 1:

The GCLA unit is composed of m subunits, the jth of which
implements the equation:

ckjþu ¼ gkjþu þ
Xuÿ1

t¼0

Yu
f¼tþ1

pkjþf

 !
gkjþt þ

Yu
t¼0

pkjþt

 !
gcjÿ1;

for u ¼ 0; 1; . . . ; kÿ 2:

If carry computation in binary addition is treated as a
prefix problem [20], another category of adders results,
known as parallel-prefix adders. Carry computation is
transformed into a prefix computation if the associative
operator � is defined according to [21] as:

gm; pmð Þ � gk; pkð Þ ¼ gm þ pm � gk;pm � pkð Þ:

Then, the carries are given by ci ¼ Gi, where Gi is the
first member of the group relation (assuming that carry
input cin ¼ 0):

ðGi; PiÞ ¼
ðg0; p0Þ; if i ¼ 0
ðgi; piÞ � ðGiÿ1; Piÿ1Þ; if 1 � i � nÿ 1:

�
The � operation on a pair of gx; pxð Þ terms is usually

represented as a node (node . of Fig. 4) and a whole carry
computation unit is represented as a tree structured
interconnection of such nodes. Several tree structures have
been proposed in the past [20], [21], [22], [23]. Figs. 5 and 6
present, for n = 8, the tree structures proposed by Ladner-
Fischer [20] and Kogge-Stone [22], respectively. The gate
level implementation of the nodes is given in Fig. 4. The
insertion of the buffering nodes, 
, is not mandatory. The
adders that result following one of the proposed tree
structures feature regular layout, but each structure has
distinct implementation area, speed, and fan-out character-
istics. For example, adders with a Ladner-Fischer prefix
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Fig. 1. Block diagram of a CLA adder.

Fig. 2. Implementation of the operators of Fig. 1.



structure require less implementation area, but have

unlimited fan-out compared to adders with a Kogge-Stone

prefix structure. On the other hand, adders with a Kogge-

Stone prefix structure are the faster reported [16], [23].

Knowles, in [23], examines combinations of the algorithms

presented in [20], [22] and presents possible tradeoffs of

fan-out and implementation area. Ladner-Fischer and

Kogge-Stone prefix structures, according to [23], are the

end cases of minimum implementation area and maximum

speed, respectively, of a large family of addition structures,

which all offer the minimum logical depth property.
Let X� denote the representation of X in the diminished-

one number system, that is, let X� ¼ X ÿ 1. If S is the sum

of A and B, it was shown in [15] that:

S� mod ð2n þ 1Þ ¼ ðA� þB�Þmod 2n; if A� þB� � 2n

A� þB� þ 1 otherwise:

�
The above relation reveals that a diminished-one modulo

2n þ 1 adder can be implemented by incrementing the sum

by one when the carry output cout ¼ 0. This can be achieved

by connecting the carry output via an inverter back to the

carry input. To avoid combinational loops that, in some

cases, lead to unwanted race conditions, the architecture of

Fig. 7 has been proposed in [15], [16]. This architecture is

based on the parallel-prefix adders with fast carry proces-

sing, proposed in [24].
It is obvious that the architecture of Fig. 7 results in

diminished-one modulo 2n þ 1 adders slower than the

corresponding modulo 2n adders and the fastest modulo

2n ÿ 1 adders [17], [19] because:

. of the extra stage of . operators that is required and

. the reentering carry has a large fan-out.

In the next section, we present two novel design

methodologies for diminished-one modulo 2n þ 1 adders.

The first one leads to CLA architectures and is derived by

using the reentering carry’s equation for simplifying the carry

computation unit’s equation. The second methodology leads
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Fig. 4. Implementations of prefix logic operators.
Fig. 5. Ladner-Fischer prefix structure.

Fig. 3. Block diagram of a two-level CLA adder.



to new and faster parallel-prefix implementations derived

by recirculating the carries in each level of the carry

computation unit instead of having a final stage of

reentering carry.
We conclude this section by the observation that all

diminished-one adders suffer from the problem of inter-

preting correctly the zero output since it may either

represent a valid zero output (that is, an addition with a

result of 1) or a real zero output (that is, an addition with a

result of 0). The following example clarifies these two

possibilities.

Example 1. Consider the diminished-one modulo 9 addition

of A ¼ 6 with B ¼ 4 and C ¼ 5 with B. We then have:

A� ¼ 1012, B� ¼ 0112, C� ¼ 1002. The diminished-one

modulo additions are presented in Table 1 (we denote

the complement of x with x).

The real zero output results only when the two inputs

are complementary. This can be detected by the logical

AND of the logical XOR of ai and bi. The Exclusive-OR

gates required for the detection circuit are already present

in the tu operators.

3 NOVEL MODULO 2n þ 1 ADDER DESIGN

In this section, we propose novel diminished-one modulo

2n þ 1 adder architectures. In the first and second subsec-

tions, we introduce conventional one and two level CLA

adder architectures, respectively, while, in the third, we

extend our theory to parallel-prefix implementations.

3.1 Novel One Level CLA Modulo 2n þ 1 Adders

As explained in the previous section, the addition of the

operands A�, B� in modulo 2n þ 1 arithmetic involves the

carry output (cout) computation and its complement’s

addition. Therefore, we can assume that the diminished-

one addition is a two cycles operation. During the first

cycle, a normal binary addition takes place with zero

carry input. During the second addition, we have that

cÿ1 ¼ cin ¼ cout ¼ cnÿ1.

Lemma 1.

ck ¼ pk þ gk � ckÿ1; for 1 � k � nÿ 1: ð2Þ

Proof. Since gi ¼ ai � bi and pi ¼ ai þ bi, gi � pi ¼ pi holds.

Then:

ck ¼ gk þ pk � ckÿ1ð Þ ¼ gk � pk þ ckÿ1ð Þ

¼ gk � pk þ gk � ckÿ1 ¼ pk þ gk � ckÿ1:

ut

The inverted carry output that is added to A� þB� by the

operators of the last stage of Fig. 7 can then be derived by

applying (2) recursively (note that c0 ¼ g0):

c�ÿ1 ¼ cnÿ1 ¼ pnÿ1 þ gnÿ1 � cnÿ2

¼ pnÿ1 þ gnÿ1 � pnÿ2 þ gnÿ2 � cnÿ3ð Þ
¼ pnÿ1 þ gnÿ1 � pnÿ2 þ gnÿ1 � gnÿ2 � cnÿ3 ¼ . . . ¼
¼ pnÿ1 þ gnÿ1 � pnÿ2 þ gnÿ1 � gnÿ2 � pnÿ3 þ . . .

þ gnÿ1 � gnÿ2 � . . . � g2 � p1 þ gnÿ1 � gnÿ2 � . . . � g2 � g1 � g0

ð3Þ

or, equivalently:

c�ÿ1 ¼ p nÿ1j jn þ g nÿ1j jn � p nÿ2j jn þ . . .þ g nÿ1j jn � g nÿ2j jn � . . .

� g 2j jn � p 1j jn þ g nÿ1j jn � g nÿ2j jn � . . . � g 2j jn � g 1j jn � g 0j jn ;
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Fig. 7. Modulo 2n þ 1 adder architecture for diminished-one arithmetic

[15], [16].

TABLE 1
Diminished-One Modulo Additions

Fig. 6. Kogge-Stone prefix structure.



where Xj jY denotes the modulo Y of X.
Equation (3) is used in the sequel for deriving simplified

equations for the carries generated during the second cycle,

that is, the carries of the modulo 2n þ 1 addition. Suppose

that these carries are denoted by c�i , with 0 � i � nÿ 2.

Then, they are given by the recursive formula

c�i ¼ gi þ pi � c�iÿ1. For i ¼ 0 and by substituting c�ÿ1 by (3),

we get:

c�0 ¼ g0 þ p0 � c�ÿ1 ¼ g0 þ p0 � ðpnÿ1 þ gnÿ1 � pnÿ2 þ . . .

þ gnÿ1 � gnÿ2 � . . . � g2 � p1 þ gnÿ1 � gnÿ2 � . . . � g2 � g1 � g0Þ:
ð4Þ

Given that

g0 þ p0 � gnÿ1 � gnÿ2 � . . . � g2 � g1 � g0

¼ g0 þ p0 � gnÿ1 � gnÿ2 � . . . � g2 � g1

and that

p0 � gnÿ1 � gnÿ2 � ::: � g2 � g1 þ p0 � gnÿ1 � gnÿ2 � . . . � g2 � p1

¼ p0 � gnÿ1 � gnÿ2 � . . . � g2 � g1;

(4) becomes:

c�0 ¼ g0 þ p0 � pnÿ1 þ p0 � gnÿ1 � pnÿ2 þ . . .

þ p0 � gnÿ1 � gnÿ2 � . . . � g2 � g1

¼ g nþ0j jn þ p nÿ1þ1j jn � p nÿ2þ1j jn þ . . .

þ p nÿ1þ1j jn � g nÿ2þ1j jn � . . . � g 1þ1j jn � g 0þ1j jn :

ð5Þ

For i ¼ 1 and by substituting c�0 from (5), we get:

c�1 ¼ g1 þ p1 � c�0
¼ g1 þ p1 � ðg0 þ p0 � pnÿ1 þ p0 � gnÿ1 � pnÿ2 þ . . .

þ p0 � gnÿ1 � gnÿ2 � ::: � g2 � g1Þ:
ð6Þ

Given that

g1 þ p1 � p0 � gnÿ1 � gnÿ2 � . . . � g2 � g1

¼ g1 þ p1 � p0 � gnÿ1 � gnÿ2 � . . . � g2�

and that

p1 � p0 � gnÿ1 � gnÿ2 � . . . � g2 þ p1 � gnÿ1 � gnÿ2 � . . . � g3 � p2

¼ p1 � p0 � gnÿ1 � gnÿ2 � . . . � g2;

(6) becomes:

c�1 ¼ g1 þ p1 � g0 þ p1 � p0 � pnÿ1 þ p1 � p0 � gnÿ1 � pnÿ2 þ . . .

þ p1 � p0 � gnÿ1 � gnÿ2 � . . . � g2

¼ g nþ1j jn þ p nÿ1þ2j jn � g nÿ2þ2j jn þ . . .

þ p nÿ1þ2j jn � p nÿ2þ2j jn � g nÿ3þ2j jn � . . . � g 1þ2j jn � g 0þ2j jn :

ð7Þ

We then can use c�1 for computing c�2, c�2 for computing c�3,

and so on, up to:

c�nÿ2 ¼ gnÿ2 þ pnÿ2 � gnÿ1 þ :::þ pnÿ2 � pnÿ3 � . . . � p1 � g0

þ pnÿ2 � pnÿ3 � . . . � p1 � p0 � gnÿ1

¼ g nþnÿ2j jn þ p nÿ1þnþ1j jn � g nÿ2þnÿ1j jn þ . . .

þ p nÿ1þnÿ1j jn � p nÿ2þnÿ1j jn � . . . � p 1þnÿ1j jn � g 0þnÿ1j jn :

The above equations sum up to the following general

formula, which defines our proposed one level CLA

diminished-one modulo 2n þ 1 architecture:

c�i ¼ g�nþij jn þ
Xnÿ2

j¼0

Ynÿ1

k¼jþ1

p�kþiþ1j jn

 !
� g�jþiþ1j jn ; ð8Þ

where

g�i ¼
pj; if j > iþ 1
gj; if j ¼ iþ 1;
gj; otherwise

8<: p�i ¼
gj; if j > iþ 1

pj; otherwise

8<:
and ÿ1 � i � nÿ 2.

3.2 Novel Two Level CLA Adders

Thinking again of the modulo 2n þ 1 addition as a two cycles

operation, during the first cycle, a normal binary addition

takes place with zero carry input. During the addition of the

second cycle, we have that cÿ1 ¼ cin ¼ cout ¼ gcmÿ1.

Lemma 2. If gqj ¼ ggj þ gpj, then gcj ¼ gqj þ ggj � gcjÿ1, for

1 � j � mÿ 1.

Proof.

gcj ¼ ggj þ gpj � gcjÿ1 ¼ ggj � ðgpj þ gcjÿ1Þ

¼ ggj þ gpj þ ggj � gcjÿ1 ¼ gqj þ ggj � gcjÿ1:

ut

The gqj, for 1 � j � mÿ 1, can be implemented by modify-

ing slightly the jth GPG subunit, that is, by adding an OR-

gate. Applying Lemma 2 recursively, gcmÿ1 can be

expressed by (note that gc0 ¼ gg0):

gcmÿ1 ¼ gqmÿ1 þ ggmÿ1 � gqmÿ2 þ ggmÿ1 � ggmÿ2 � gqmÿ3 þ . . .

þ ggmÿ1 � ggmÿ2 � . . . � gg1 � gg0:

Therefore, during the modulo 2n þ 1 addition, the

BGCLA unit should obey the following equation:

gc�ÿ1 ¼ gqmÿ1 þ ggmÿ1 � gqmÿ2 þ ggmÿ1 � ggmÿ2 � gqmÿ3 þ . . .

þ ggmÿ1 � ggmÿ2 � . . . � gg1 � gg0

or, equivalently:

gc�ÿ1 ¼ gq mÿ1j jm þ gg mÿ1j jm � gq mÿ2j jm þ . . .

þ gg mÿ1j jm � gg mÿ2j jm � . . . � gg 2j jm � gq 1j jm

þ gg mÿ1j jm � gg mÿ2j jm � . . . � gg 1j jm � gg 0j jm :

Using this equation, we can also get the equations for

the rest of the carries that the modulo 2n þ 1 adders’

BGCLA unit should produce. The group carries of the

modulo 2n þ 1 addition are given by the recursive

formula gc�i ¼ ggi þ gpi � gc�iÿ1. For i ¼ 0 and using the

above equation, we get:
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gc�0 ¼ gg0 þ gp0 � ðgqmÿ1 þ ggmÿ1 � gqmÿ2 þ ggmÿ1

� ggmÿ2 � gqmÿ3 þ . . .þ ggmÿ1 � ggmÿ2 � . . . � gg1 � gg0Þ:
ð9Þ

Making use of the relations

gg0 þ gp0 � ggmÿ1 � ggmÿ2 � . . . � gg1 � gg0

¼ gg0 þ gp0 � ggmÿ1 � ggmÿ2 � . . . � gg1

and

gp0 � ggmÿ1 � ggmÿ2 � . . . � gg1 þ gp0 � ggmÿ1 � ggmÿ2 � . . . � gq1

¼ gp0 � ggmÿ1 � ggmÿ2 � ::: � gg1;

(9) can be simplified to

gc�0 ¼ gg0 þ gp0 � gqmÿ1 þ gp0 � ggmÿ1 � gqmÿ2 þ . . .

þ gp0 � ggmÿ1 � ggmÿ2 � . . . � gg2 � gg1

or, equivalently:

gc�0 ¼ gg mþ0j jm þ gp mÿ1þ1j jm � gq mÿ2þ1j jm þ . . .

þ gp mÿ1þ1j jm � gg mÿ2þ1j jm � . . . � gg 1þ1j jm � gg 0þ1j jm:

Working in the same way, we substitute the equation

derived above for gc�0 in the equation gc�1 ¼ gg1 þ gp1 � gc�0
and get:

gc�1 ¼ gg1 þ gp1 � gg0 þ gp1 � gp0 � gqmÿ1 þ . . .

þ gp1 � gp0 � ggmÿ1 � ggmÿ2 � . . . � gg3 � gg2

or, equivalently:

gc�1 ¼ gg mþ1j jm þ gp mÿ1þ2j jm � gg mÿ2þ2j jm þ . . .

þ gp mÿ1þ2j jm � gp mÿ2þ2j jm � . . . � gg 1þ2j jm � gg 0þ2j jm:

We then can use gc�1 for computing gc�2 and so on, up to:

gc�mÿ2 ¼ ggmÿ2 þ gpmÿ2 � ggmÿ3 þ . . .þ gpmÿ2 � gpmÿ3 � . . .

� gp1 � gg0 þ gpmÿ2 � gpmÿ3 � . . . � gp1 � gp0 � ggmÿ1

or, equivalently:

gc�mÿ2 ¼ gg mþmÿ2j jm þ gp mÿ1þmÿ1j jm � gg mÿ2þmÿ1j jm þ . . .

þ gp mÿ1þmÿ1j jm � gp mÿ2þmÿ1j jm � . . .

� gp 1þmÿ1j jm � gg 0þmÿ1j jm:

The above equations can be expressed by the following

general formula, which defines the logic of the BGCLA unit

of a two-level CLA diminished-one modulo 2n þ 1 adder

when the GPG unit has been modified for producing the gq

signals:

gc�j ¼ gg�mþjj jm þ
Xmÿ2

t¼0

Ymÿ1

f¼tþ1

gp�fþjþ1j jm

 !
�gg�tþjþ1j jm;

where

gg�z ¼
gqj; if z > jþ 1
ggj; if z ¼ jþ 1;
ggj; otherwise

8<: gp�z ¼
ggj; if z > jþ 1

gpj; otherwise

8<:
and ÿ1 � j � mÿ 2.

3.3 Novel Parallel-Prefix Modulo 2n þ 1 Adders

The last stage . operators of Fig. 7 accept the reentrant carry

c�ÿ1 ¼ Gnÿ1 and produce the modulo 2n þ 1 carries

c�i ¼ Gi þ Pi �Gnÿ1, for 0 � i � nÿ 2. By defining the

complement of G;Pð Þ, which we will hereafter denote by

G;Pð Þ, to be equal to G;P
ÿ �

, the modulo 2n þ 1 carries can

be expressed in parallel-prefix form as c�i ¼ G�i , where:

ðG�i ; P �i Þ ¼
ðGnÿ1; Pnÿ1Þ; if i ¼ ÿ1
ðGi; PiÞ � ðGnÿ1; Pnÿ1Þ 0 � i � nÿ 2

�
ð10Þ

and the terms Gnÿ1, Pnÿ1 are computed according to (1).
As we have mentioned earlier, the design of Fig. 7, apart

from adding an extra logic operator stage, also has the
disadvantage that the reentering carry has a fan-out of n.
Therefore, in the sequel, we utilize the idea of carry
recirculation in each prefix level, which was introduced in
[17], for transforming the computation of the carries c�i of
the modulo 2n þ 1 adder, for ÿ1 � i � nÿ 2, in a parallel-
prefix computation problem. To this end, we need to define
the group generate and group propagate functions Ga;b and
Pa;b for the group of bits a; aÿ 1; . . . ; b, with a > b, as

Ga;b; Pa;b
ÿ �

¼ ga; pað Þ � gaÿ1; paÿ1ð Þ � . . . � gb; pbð Þ:

Note that, according to (1), Ga;0; Pa;0
ÿ �

¼ Ga; Pað Þ.
The novel parallel-prefix modulo 2n þ 1 adder design

method which we propose in this paper is based on the
following theorem:

Theorem 1. G�i ; P
�
i

ÿ �
¼ Gi; Pið Þ � Gnÿ1;iþ1; Pnÿ1;iþ1

ÿ �
fo r

0 � i � nÿ 2.

Proof. From (10), we have:

G�i ; P
�
i

ÿ �
¼ Gi; Pið Þ � Gnÿ1; Pnÿ1ð Þ ¼ Gi; Pið Þ � Gnÿ1; Pnÿ1

ÿ �
¼ Gi þ Pi �Gnÿ1; Pi � Pnÿ1

ÿ �
¼ Gi þ Pi � Gnÿ1;iþ1 þ Pnÿ1;iþ1 �Gi

ÿ �
; Pnÿ1

ÿ �
¼ Gi þ Pi �Gnÿ1;iþ1 Pnÿ1;iþ1 þGi

ÿ �
; Pnÿ1

ÿ �
¼ Gi þ Pi �Gnÿ1;iþ1 � Pnÿ1;iþ1 þ Pi �Gnÿ1;iþ1 �Gi; Pnÿ1

ÿ �
¼ Gi þ Pi �Gnÿ1;iþ1; Pi � Pnÿ1;iþ1

ÿ �
¼ Gi; Pið Þ � Gnÿ1;iþ1; Pnÿ1;iþ1

ÿ �
¼ Gi; Pið Þ � Gnÿ1;iþ1; Pnÿ1;iþ1

ÿ �
:

ut

Theorem 1 implies that

G�i ; P
�
i

ÿ �
¼ ðgi; piÞ � . . . � ðg0; p0Þ�
ðgnÿ1; pnÿ1Þ � . . . � giþ1; piþ1ð Þ

holds for 0 � i � nÿ 2, that is, the carries in a modulo 2n þ 1

adder can be computed using a prefix structure in which
the carry at each position i not only depends on bits i to 0
but also on the bits nÿ 1 through iþ 1. This can be
achieved by recirculating the carries at each prefix level,
instead of having a single final stage for the reentrant carry,
as proposed in [17]. For achieving carry recirculation at each
prefix level, more logic operators must be added to a
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Kogge-Stone prefix structure and the outputs of the highest

order 2mÿ1 operators of stage mÿ 1 need to be driven to the

lowest order 2mÿ1 operators of stage m.
The fastest parallel-prefix modulo 2n and modulo 2n ÿ 1

adders are capable of computing the carries within m ¼
log2 n prefix levels. For not delaying the addition operation

in an RNS environment, the proposed adders should also be

able to compute the carries within log2 n prefix levels.

However, the equations in the form produced by Theorem 1

cannot always be implemented in log2 n prefix levels.

Consider, for example, the following equation produced

for c�0 by Theorem 1 in a modulo 257 (¼ 28 þ 1) adder:

c�0 ¼ g0; p0ð Þ�
g7; p7ð Þ � g6; p6ð Þ � g5; p5ð Þ � g4; p4ð Þ � g3; p3ð Þ � g2; p2ð Þ � g1; p1ð Þ

Since this equation has eight terms that need to be

associated by the use of operator �, which treats its left

and right operands distinctly, it is clear that the computa-

tion of c0, as indicated by the above equation, cannot be

achieved within the three parallel-prefix levels required by

the corresponding modulo 28 (modulo 256) and modulo

28 ÿ 1 (modulo 255) adders. This is obvious since, for

computing G7;1; P7;1

ÿ �
, the three prefix levels are exhausted

and a fourth level is required. To overcome this problem,

we introduce the following theorem:

Theorem 2. Suppose that Gx; Pxð Þ ¼ g; pð Þ � G;Pð Þ and

Gy; Py
ÿ �

¼ p; gð Þ � G;Pð Þð Þ. Then, Gx ¼ Gy.

Proof. Since

Gx ¼ gþ p �G ¼ gþ p �G
ÿ �

¼ g � pþGð Þ
¼ g � pþ gGð Þ ¼ pþ gGð Þ

and Gy ¼ pþ gGð Þ, we get the required Gx ¼ Gy. tu
For area-time efficient parallel-prefix modulo 2n þ 1

adder implementations, Theorem 2 needs to be applied

j times recursively to the equations of the form

gi; pið Þ � . . . � g0; p0ð Þ � Gnÿ1;iþ1; Pnÿ1;iþ1

ÿ �
produced by Theorem 1, until:

nÿ 1ÿ iþ j ¼ n; if i > n
2 ÿ 1

n
2 ; if i � n

2 ÿ 1:

�
Example 2. Consider the two 8-bit operands

A ¼ a7a6a5a4a3a2a1a0

and

B ¼ b7b6b5b4b3b2b1b0

in the diminished-one number representation. For con-

structing a parallel-prefix modulo 257 adder for them,

from Theorem 1, we get the following equations:

c�ÿ1 ¼ ð g7; p7ð Þ � g6; p6ð Þ � g5; p5ð Þ � g4; p4ð Þ � g3; p3ð Þ � g2; p2ð Þ
� g1; p1ð Þ � g0; p0ð ÞÞ

c�0 ¼ g0; p0ð Þ � g7; p7ð Þ � g6; p6ð Þ � g5; p5ð Þ � g4; p4ð Þ � g3; p3ð Þð

� g2; p2ð Þ � g1; p1ð Þ
�

c�1 ¼ g1; p1ð Þ � g0; p0ð Þ�
g7; p7ð Þ � g6; p6ð Þ � g5; p5ð Þ � g4; p4ð Þ � g3; p3ð Þ � g2; p2ð Þð Þ

c�2 ¼ g2; p2ð Þ � g1; p1ð Þ � g0; p0ð Þ
� g7; p7ð Þ � g6; p6ð Þ � g5; p5ð Þ � g4; p4ð Þ � g3; p3ð Þð Þ

c�3 ¼ g3; p3ð Þ � g2; p2ð Þ � g1; p1ð Þ � g0; p0ð Þ
� g7; p7ð Þ � g6; p6ð Þ � g5; p5ð Þ � g4; p4ð Þð Þ

c�4 ¼ g4; p4ð Þ � g3; p3ð Þ � g2; p2ð Þ � g1; p1ð Þ � g0; p0ð Þ
� g7; p7ð Þ � g6; p6ð Þ � g5; p5ð Þð Þ

c�5 ¼ g5; p5ð Þ � g4; p4ð Þ � g3; p3ð Þ � g2; p2ð Þ � g1; p1ð Þ � g0; p0ð Þ
� g7; p7ð Þ � g6; p6ð Þð Þ

c�6 ¼ g6; p6ð Þ � g5; p5ð Þ � g4; p4ð Þ � g3; p3ð Þ � g2; p2ð Þ � g1; p1ð Þ
� g0; p0ð Þ � g7; p7ð Þð Þ:

As mentioned earlier these cannot be computed within

three prefix levels. Applying Theorem 2, we get the

following set of equations:

c�ÿ1 ¼ g7; p7ð Þ � g6; p6ð Þ � g5; p5ð Þ � g4; p4ð Þ � g3; p3ð Þ � g2; p2ð Þð
� g1; p1ð Þ � g0; p0ð ÞÞ

c�0 ¼ p0; g0ð Þ � g7; p7ð Þ � g6; p6ð Þ � g5; p5ð Þ � g4; p4ð Þ � g3; p3ð Þð
� g2; p2ð Þ � g1; p1ð ÞÞ

c�1 ¼ p1; g1ð Þ � p0; g0ð Þ � g7; p7ð Þ � g6; p6ð Þ � g5; p5ð Þð
� g4; p4ð Þ � g3; p3ð Þ � g2; p2ð ÞÞ

c�2 ¼ p2; g2ð Þ � p1; g1ð Þ � p0; g0ð Þ � g7; p7ð Þ � g6; p6ð Þ � g5; p5ð Þð
� g4; p4ð Þ � g3; p3ð ÞÞ

c�3 ¼ g3; p3ð Þ � g2; p2ð Þ � g1; p1ð Þ � g0; p0ð Þ
� g7; p7ð Þ � g6; p6ð Þ � g5; p5ð Þ � g4; p4ð Þð Þ

c�4 ¼ g4; p4ð Þ � g3; p3ð Þ � g2; p2ð Þ � g1; p1ð Þ
� p0; g0ð Þ � g7; p7ð Þ � g6; p6ð Þ � g5; p5ð Þð Þ

c�5 ¼ g5; p5ð Þ � g4; p4ð Þ � g3; p3ð Þ � g2; p2ð Þ
� p1; g1ð Þ � p0; g0ð Þ � g7; p7ð Þ � g6; p6ð Þð Þ

c�6 ¼ g6; p6ð Þ � g5; p5ð Þ � g4; p4ð Þ � g3; p3ð Þ
� p2; g2ð Þ � p1; g1ð Þ � p0; g0ð Þ � g7; p7ð Þð Þ:

Fig. 8 presents the implementation indicated by the

above equations. Note that only three prefix levels are

required. Modified operators are presented in gray color in

Fig. 8.
In the general case of n bits wide operands, the carries for

a diminished-one modulo 2n þ 1 adder can be computed

using Theorems 1 and 2 in log2 n stages, where stage i,

1 � i � log2 nÿ 2ð Þ, requires 3 n
2 ÿ 2i operators and the last

two stages n operators.
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4 COMPARISONS

In this section, we compare the proposed adder architec-
tures against those proposed in [15], [16] both qualitatively
and quantitatively. For our qualitative comparison, we will
use a simple model, whereas, for the quantitative compar-
ison, we will use actual static CMOS implementations. We
use the notation LAF and KST for diminished-one modulo
2n þ 1 adders with, respectively, a Ladner-Fischer and a
Kogge-Stone prefix carry computation structure that follow
the architecture proposed in [15], [16] and presented in
Fig. 7. The proposed adders in Sections 3.1 and 3.2 will be
denoted as CLA adders, whereas those proposed in
Section 3.3 will be denoted as PPREF.

We will at first make use of the analytical model
originally presented in [25], which was also used in [15],
[16], [17], under the notation “unit-gate model,” for
comparing the proposed parallel-prefix adders against
LAF and KST adders. This model assumes that each gate,
excluding exclusive-OR, counts as one elementary gate for
both area and delay. An exclusive-OR gate counts for two
elementary gates for both area and delay. The model
ignores fan-out, therefore, the validation of the estimates

that it produces will be later carried out by CMOS static
implementations. The estimates produced by the model are
indicative in the case of parallel-prefix architectures since
these are built solely by two-input gates. However, in CLA
architectures, gates with multiple inputs may be required.
That is why we do not include the proposed CLA
architectures in our comparisons using the unit-gate model.

In Table 2, we present the area and delay estimates using
this model as a function of the word length n. We have also
included results for the fastest modulo 2n and modulo 2n ÿ 1
[17] adder. For the derivation of the area estimates, the 

buffering nodes in the carry computation prefix structure of
Figs. 5 and 6 have not been taken into account.

Considering the delay, Table 2 not only reveals that the
proposed adders are faster than both LAF and KST adders,
but that they can operate as fast as the fastest known modulo
2n and modulo 2n ÿ 1 adders, which makes them ideal for use
in an RNS application. From Table 2, we can see that, among
the diminished-one modulo 2n þ 1 adders, LAF adders
require less area for their implementation. It should be noted,
however, that the estimations produced by the adopted
model do not take into account the area that may be required
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for buffer insertion needed to alleviate the unlimited fan-out

problem of Ladner-Fischer prefix structures.
For more realistic evaluation, the proposed CLA and

PPREF architectures and the LAF and KST adders were

described in HDL for n = 4, 8, 16, and 32. For the CLA

adders case, we modeled both the single and the two-level

CLA adders, with various group sizes for the latter. For

direct comparisons with the results presented in [17], we

mapped our designs to the AMS CUB implementation

technology (0:6�m, 2-metal layer, 5.0 V) using the Design

Compiler1 tool of Synopsys Inc. Each design was then

recursively optimized for speed until the tool’s algorithm

was unable to provide a faster design. As a last stage of each

recursive run, the tool was instructed to recover as much

area as possible.
For the proposed CLA adders, we will present only the

results for the fastest derived implementation. This fastest

implementation when n = 4 is produced when a single level

of CLA is used. However, for the rest of the examined cases

(n = 8, 16, or 32), two-level CLA adders led to faster

implementations. For the latter cases, we give, in parenth-

eses, the number of subunits in the GPG and GCLA units

that led to the minimum delay results. Table 3 lists the

obtained results. All the delay results of Table 3 below

assume worst case process parameters and are expressed in

ns, whereas all area results are expressed in mils2. Shaded
cells indicate the best results in area or execution delay.

Table 3 indicates that, for small values of n, the proposed
CLA adder design methodology produces both faster and
smaller implementations than LAF and KST. When n
becomes large, however, LAF and KST adders are capable
of leading to better performance with the penalty of
increased area. PPREF adders are the fastest diminished-
one modulo 2n þ 1 adders when n � 8. Moreover, as n
becomes larger, so does the performance difference between
PPREF implementations against both LAF and KST adders.
On the average of the examined cases, the proposed PPREF
adders are approximately faster by 19 percent than LAF or
KST adders. For reaching the fastest implementations, our
proposed PPREF design methodology requires, on the
average, 31 percent and 17 percent more implementation
area over LAF and KST adders.

Comparing the results of Table 3 with those presented in
Table III of [17], we can verify that the proposed PPREF
adders, apart from being the fastest (excluding the case of
very narrow operands in which the proposed CLA adders
offer the best results) among those already proposed for
diminished-one modulo 2n þ 1 addition, they can also
operate as fast as the fastest known integer (modulo 2n) or
modulo 2n ÿ 1 adders. Therefore, they are highly applicable
in RNS applications.

As we can see from Table 3, the proposed adders offer
better delay results than LAF and KST adders, but, in some
cases, with the penalty of increased implementation area. It
is interesting to know whether, by applying the proposed
architectures and targeting a performance equal to that of the
faster among LAF and KST adders, the resulting adders can
be implemented in less area. Therefore, in Table 4, we present
results obtained by instructing the synthesis tool to find the
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smaller implementation of the proposed adders that offers at
least the performance of the fastest LAF or KST adders.
Comparing the results of Table 3 and Table 4, we can see that,
in all but one case, the proposed PPREF adders with smaller
implementation area can lead to at least the same perfor-
mance as LAF or KST adders. The proposed CLA architec-
tures cannot lead to implementations as fast as the faster
among LAF and KST adders in the n = 16 and n = 32 cases.
That is why they do not appear in Table 4 in the
corresponding rows.

5 CONCLUSIONS

In this paper, we have presented two novel architectures for
designing diminished-one modulo 2n þ 1 adders. The first
architecture leads to carry look-ahead adder implementa-
tions and was derived by associating the reentering carry
equation with those for producing the carries of the modulo
addition. The second architecture leads to parallel-prefix
adders and was derived by recirculating the carries in each
level of the prefix structure. Static CMOS implementations
have shown that the proposed modulo 2n þ 1 adders
compare favorably with the other already known adder
architectures. Moreover, the proposed parallel-prefix mod-
ulo 2n þ 1 adders are as fast as the fastest integer (modulo
2n) and modulo 2n ÿ 1 adders, that is, they are suitable for
RNS applications.
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