
Easily Verified IP Watermarking

Anastasios Bikos & Haridimos T. Vergos

Computer Engineering and Informatics Department,
University of Patras, GR 26504, Rio, Greece.

e-mails: {mpikos, vergos}@ceid.upatras.gr

Abstract—Several methods of marking designs to help identify
ownership have been proposed. All of these methods have a
high degree of difficulty in watermark proof. We attack this
problem by proposing a new watermarking technique at the state
machine level along with assisting hardware to accomplish proof
of ownership straightforwardly. Our experiments on benchmark
circuits and an example system-on-chip (SoC) indicate a negligible
increase in delay and an extremely small increase in the required
implementation area.

I. INTRODUCTION

The digital circuits design paradigm has undergone a
dramatic change during the last two decades. The original
paradigm of having one company developing from original
concept through to fabrication has been abandoned in order to
cope with the challenges of the emerging fabrication technolo-
gies. Nanometer scale feature sizes that allow fabrication of
ever more complex but also more expensive chips, have given
rise to independent chip foundries that build designs developed
by other companies and have shifted the traditional all-purpose
monolithic chip design houses to developing custom designs
specific to the needs of a part of the total chip.

The current integrated circuits (ICs) are actually Systems
on Chip (SoC) composed by multiple components and inter-
connecting logic and are built in a modular way, pretty much
in the same way that a software package is made up by tools
written by different coders and vendors. This has led to a new
business model where the individual components required in
building a SoC are designed by different design houses and
are then leased to the SoC developer for a specific project
and/or a specific number of chips. Leasing different intellectual
property (IP) cores from different design houses and having
only to develop their interconnection logic and a very small
part of the remaining SoC is the only way for the SoC vendor
to meet the strict time to market while in parallel keeping the
cost low by having only a small development team.

This IP-based design methodology however, has brought to
light a new problem, namely, that of protecting the terms of the
IP lease. That is, the IP developer must have a method to verify
that his IP is used only for the specific SoC and the number of
units for which the royalties have been paid for and must have
clear proofs about the ownership of the design in question if
in need to litigate against the SoC vendor. This problem has
been researched in several other fields that need a proof of
ownership, for example in images, video and audio and the
most common way to attack it is the use of watermarks [1].
The most common methods and corresponding research efforts
for IP watermarking are analyzed in the next section.

In IP watermarking however, there is another problem that

is often overlooked. The leased IP is embedded deep in the SoC
design hierarchy, making its controllability and observability
very low. Therefore, a watermarking method that requires all
inputs and all outputs of the leased IP to be controllable and
observable for its proof would be hardly of any application
to a finished SoC. To this end, in this paper we attack the IP
watermarking problem from a different point of view, that of,
proving ownership with the least possible available resources.
We propose a watermarking method at the state machine level
along with accompanying hardware, which can provide proof
of ownership using a single input and a single output along
with the system clock. We assume that these resources can be
made available during the testing of the IP. Our experimental
results based on well-known sequential benchmark circuits as
well as on a small SoC example, indicate that the proposed
method can be implemented with a very small area overhead
and with a negligible delay overhead.

The rest of this manuscript is organized as follows. We
review the proposed IP watermarking methods in Section II
along with a list of their advantages and disadvantages. The
proposed watermarking method and its proof of existence
mechanism are detailed in Section III. Our experimental
method and results are given in IV. We conclude in the last
Section.

II. PRIOR WORKS

The already available IP watermarking methods can be
classified into three major categories according to the char-
acteristics of the circuit they are applied. Table I summarizes
the pros and cons of the different level methods.

The methods that are applied at the layout level of the
circuit (for example [2]–[5]) embed the watermark by either
a way similar to paper watermarking, that is, by embedding
unused hardware at the layout of the circuit or by imposing
several extra constraints at the layout level, such as to place
some subfunctions at a certain row or at a certain column
or route strangely interconnections that do not belong to the
critical path. Small shifts from the standard on-grid placement
of specific blocks or unused buried vias also fall in this
category of techniques. Since automated place and route tools
will remove unused components, will output warning messages
for unused ones that can not be removed and will also restore
the placement of off-grid components, these methods are well
suited only to hard-IPs, that is IPs that the end-user is not
allowed to edit. Moreover, proof of ownership can only be
claimed by means of microphotographs taken from the finished
product.



Another class of methods uses the power signature of the
IP. The current drawn by a design for a pair of input vectors
depends on the number of transitions caused and can therefore
be thought of as a signature for this design for this vector
pair. By carefully selecting a series of input vectors, with
some of them causing a high number of transitions while
the rest only a few the total signature can be considered
specific for the particular design and can therefore be used as
a watermark [6], [7]. Unfortunately, when an IP is embedded
deep in the hierarchy of a SoC, the proof of this signature
is very hard, since the vectors that must be applied cause
transitions to the rest of the SoC too, while the SoC vendor
may be reluctant to provide vectors that put the rest of the IPs
of a SoC into a low power state.

Most research efforts however, are focused on IP water-
marking solutions that target the finite state machine (FSM)
of the sequential circuits [8]–[12]. This category of techniques
includes those in which the watermark is inserted as an entry
FSM that requires a specific input sequence before the normal
operation of the system begins, those that add an authentication
FSM in the front end that provides a specific bit sequence when
traversed and those that embed a second FSM that generates
the watermark output. Several research efforts have attacked
the large overhead problem of inserting a completely new FSM
by proposing methods for merging part of the watermark FSM
with the operation FSM. Such merging may be achieved by
adding unused edges for producing a signature on the output
that would not normally be produced in the design. For each
edge needed if the node has an unused combination it is used
to provide the required transition. In the case that no available
input sequence exists at any node, the inputs are increased to
double the edges from any state. The hardware overhead can be
further reduced if the bits in the state encodings are used as
substrings of the larger signature that is used as watermark.
To this end, recent efforts [13] generate a directed graph
representation of the watermark and then attempt to find its
best-case graph match with the graph representation of the
FSM.

Unfortunately, most of the research efforts in the FSM
watermarking category follow a graph-theoretic approach, ne-
glecting the applicability issue and in particular watermark
verification. They naively consider that all inputs and outputs,
as well as all state encoding bits are available to the IP vendor
after the SoC production. This is hardly true however in a real
SoC environment, since the inputs of the FSM may come from
another IP, while it outputs may drive a third IP. Therefore,
for the above methods to be applicable in the modern SoC
design paradigm, the resources required for proof of watermark
existence must be realistic. To this end, in the next section we
describe an IP watermarking method, for which watermark
verification can be obtained using the system clock, a single
input and a single output.

III. PROPOSED WATERMARKING METHOD

In this section, we introduce a watermarking method at
the state machine level, with a straightforward verification of
existence. For exemplifying our method, we consider the FSM
of Fig. 1, which describes the Mealy model of a circuit with
two inputs and a single output. Our FSM has k = 7 states,

TABLE I. WATERMARKING TECHNIQUES COMPARISON

Watermarking Class Pros Cons

Layout Implemented easily Only for hard IPs
Verification is expensive

Power Implemented easily Verification is hard
Vectors must be chosen carefully

State Machine

High overhead possible
Implemented easily Possibly easily removed / disabled

May provide obfuscation Questionable ease of verification
in SoC environment

 

S0

S1

S2

S3S4

S5

S6

1x/0

x0/1

11/0

0x/0

10/0

1x/1

Fig. 1. Original example FSM

with S0 being the initial state. The following procedures are
then applied for attaining a watermarked FSM :

• A set of m ≤ k states is selected, along with a random
walk over them which starts from the initial state. Since the
value of m determines the length of the watermark, a value
close to k will produce as wide watermarks as possible. In
our example case we select m = 6 and the random walk
S0 → S5 → S4 → S3 → S1 → S6.

• An extra input, T , is added. All initial edges of the FSM are
also present in the watermarked FSM when T = 0. Edges
for the selected random walk are then added, which have
T = 1, while all the rest inputs and all outputs are do not
care terms.

• We consider a Johnson counter with a length of at least
⌈
m
2

⌉
cells and a random initial state for it. Its values during m−1
consecutive clock cycles are recorded. The string produced
during these cycles is our watermark. The m selected states
are then encoded according to these values, while the rest
states can be encoded arbitrarily. In our example case, for
m = 6 we consider a 3-bit Johnson counter. Its cells are
denoted as d2d1d0. If we start from the initial value of
d2d1d0 = 1102, then during the 5 next clock cycles we will
get the sequence 100, 000, 001, 011, 111, which gives us the
watermark 110100000001011111. Then, the selected states
are encodes as follows : S0 → 110, S5 → 100, S4 → 000,
S3 → 001, S1 → 011 and S6 → 111. Obviously S2 which
does not belong to our set of selected stages can be encoded
arbitrarily.

Fig. 2 presents the watermarked FSM that resulted from the
above procedures in our example case.



 

110

000

010 

or

101

001000

100

001

01x/0

0x0/1

011/0

010/0

00x/0
01x/1

1xx/x

1xx/x

1xx/x

Fig. 2. Watermarked FSM

 

Johnson counter

State Register

 log2m
Equality

comparator

Clock

T

Q

Q
SET

CLR

D
Watermarked 

FSM indication

 log2m

 log2m

Fig. 3. Extra hardware required for proof of watermark.

Once the FSM has been watermarked as suggested above,
watermark verification is straightforward. The following com-
ponents are embedded in the design to this end :
• a Johnson counter that is initialized to the same value with

the encoding of the initial state and accepts T as an enable
signal

• an equality comparator that compares the state register value
with the value of the Johnson counter, and

• a single flip flop, which is initialized to 1, with its output
driven back to its input via a two-input AND gate that also
accepts the comparator output.

Fig. 3 presents a block diagram of the hardware embedded
to provide ease of watermark proof. For watermark verifica-
tion, one needs to set T to 1, perform an initialization, so that
the initial state of the FSM and the initial value of the Johnson
counter are entered. Then, m− 1 clock cycles are applied. If
the watermark is present, this means that during these cycles
both inputs of the comparator will be equal and therefore the
flip-flop will remain at 1. In case of a different state encoding
at any clock cycle, the flip-flop will be cleared and will remain
cleared till the end of the m − 1 clock cycles. At the end of
the m−1 cycles only the flip-flop output needs to be sampled.
An output of 1, indicates that the FSM is watermarked.

In the above discussion we referred to a Johnson counter
clearly for keeping the presentation as clear as possible.
However, any other hardware structure that can provide the

required m state encodings can be used instead, as for example,
a linear feedback shift register (LFSR) with a length of at least
n, with n ≥ log2(m + 1). An LFSR is a far better solution
than a Johnson counter for FSMs with a large number of states,
since the required LFSR width increases only logarithmically
as m increases.

Obviously, when two or more FSMs are available within
the same design, the designer can choose to watermark any
number of them for increased security. In this case, the
watermarking of more FSMs can be accommodated by only
one extra input, that is T . Even with just one FSM present
in a design, for increased security, the IP vendor may want to
watermark more than one random walks that may have totally
distinct or share a number of states. However, in this case,
more than one extra input must be added in every edge.

Finally, from the above discussion it becomes clear that
in the proposed method there is a clear trade-off between
the length of the watermark and the hardware overhead. For
a wider watermark more states need to be selected for our
random walk, implying a wider Johnson counter and equality
comparator. It is also noted that the number of watermarks
that can be derived by the proposed method is not simply
given by all possible initial states of the Johnson counter. This
is because, we can permute the bits of a Johnson counter in
any possible way and still get a valid encoding for our states.
Of course, the same permutation must be performed in the
Johnson counter outputs of Fig. 3 before they are driven to
the equality comparator, without any further hardware cost.

IV. EXPERIMENTAL RESULTS

In this section, we evaluate the overhead of the proposed
method in terms of area and delay using two different experi-
ments.

For our first experiment we used some of the medium
and large sized benchmark circuits (FSMs) in the IWLS 2005
benchmark suite [14]. Starting-off from the HDL description
of these circuits we used the Synopsys Design Compilerr
tool for synthesizing and mapping them into a 32 nm CMOS
implementation technology [15]. A standard synthesis and
optimization script from [16] was used, properly modified for
targeting the circuit with the least area that can provide an
operating frequency of at least 500 MHz. The descriptions
of the FSMs were then modified so as to include a water-
mark according to the proposed method, as well as the extra
hardware indicated in Fig. 3 for straightforward watermark
proof. For every examined circuit, we considered four different
random walks composed of the 25%, 50%, 75% and 90% of
the total states. For the smallest of the examined cases (s832)
we consider that these states are encoding according to the
state sequence of a Johnson counter, while for the rest two
according to the states of an LFSR implementing a primitive
polynomial. The random walks with 25%, 50%, 75% and 90%
of the total states result in 28, 91, 130 and 276 bit watermark
for s832, respectively, while for s298 the resulting watermarks
are 330, 763, 1312 and 1576 bits wide, respectively. In each
case we further considered several initial state encodings. The
modified descriptions were then also synthesized and mapped
following the same procedure and constraints with the original
ones. The attained overhead results averaged over the different
initial state encodings are presented in Table II.



TABLE II. OVERHEAD ON BENCHMARK CIRUITS

Circuit States (k) Edges
Overhead according to m

k percentage
25% 50% 75% 90%

Area Delay Area Delay Area Delay Area Delay
s832 25 245 8.1% 0.18% 11,2% 0.54% 13.4% 0.76% 16.8% 0.83%

s1488 48 251 3.9% 0.26% 6.8% 0.67% 8.9% 0.81% 11.1% 0.92%
s298 218 1096 3.1% 0.39% 5.7% 0.74% 7.8% 0.91% 9.9% 1.07%

The delay overhead on the initial FSM is in all examined
cases extremely small; it is in all but one cases less than 1%.
Furthermore, it is in all cases imposed by the extra hardware
presented in Fig. 3 and not by the insertion of the extra input
T and the new edges of the FSM. On the other hand, the area
overhead is significant in the two smallest examined circuits
(s832 and s1488) especially when the random walk selected is
composed by a significant number of states (50% of the total
or more). It is less than 10% in all examined cases however, in
the largest examined circuit. We should however keep in mind
that these results are for circuits that just implement an FSM,
whereas an FSM in real life is only a very small part of the
IP leased for a complete SoC design.

To this end, in our second experiment we considered a
complete SoC built on the AMBAr architecture. The SoC
is composed by two AMBA high-performance bus (AHBr)
masters, namely a processor and a DMA controller, a bus
arbitrer, an AHB to the Advanced Peripheral Bus (APBr)
bridging module and an in-house designed AHB slave IP core
composed by a 4KB 4-way set-associative write-back cache
and its controller. The purpose of the cache is to act as an
intermediate between the AHB masters and slower memory,
offering zero wait state transactions in most accesses. The
AHB protocol supports both single and burst transfers with
different address increments of variable widths; namely, bytes,
halfwords and words. To cope with all these needs the cache
controller contains a medium-sized FSM with 79 states that
needs to distinguish the type and size of transfer, in case of
a cache hit of a burst transfer to present to the processor the
required information and then perform address generation (and
possibly wrapping) for the rest of the burst transfer, while in
case of a cache miss it needs first to access the missing address
from the slow memory imposing the required wait states and
then continue with cache block filling. It finally takes care
of coherency problems (such as a read access after a write
access) and updates the block replacement information after
each access. The cache controller along with the cache memory
accounts for approximately the 26% of the total SoC logic.

We synthesized the whole SoC without and with the
proposed watermarking method in the cache controller FSM,
along with the extra watermark verification hardware using
a random walk over all the states of the FSM and encoding
the states according to the states of an LFSR. The embedded
watermark is 553 bits wide. The watermarked SoC offers the
exact same clock frequency as the original one, while its area
is larger by only 0.12%.

V. CONCLUSIONS

To cope with the ever increasing complexity of today’s
SoCs, a new business model has been adopted where the
individual IP cores required in building the SoC are designed
by different design houses and are then leased to the SoC

developer for a specific project and / or a specific number of
chips. To make sure that the lease terms are followed each IP
must be watermarked by its designer. The already proposed
watermarking methods at the FSM level totally ignore the
fact that the IP will be finally embedded deep in the SoC
hierarchy making it too uncontrollable and unobservable for
the watermark to be verified.

To this end, in this paper, we have presented a water-
marking method along with the required hardware add-ons
to simplify watermark verification. Following the proposed
method, a single input and a single output only need to be
controllable and observable, respectively. Our experimental
results indicate that the proposed method can be implemented
with negligible delay and small area overheads.

REFERENCES

[1] D. Saha and S. Sur-Kolay, “Robust intellectual property protection of
VLSI physical design,” IET Computers Digital Techniques, vol. 4, no. 5,
pp. 388–399, 2010.

[2] E. Charbon, “Hierarchical watermarking in IC design,” in Proceedings
of the IEEE 1998 Custom Integrated Circuits Conference, pp. 295–298.

[3] A. B. Kahng et al., “Watermarking techniques for intellectual property
protection,” in Proceedings of the 35th Annual Design Automation
Conference, 1998, pp. 776–781.

[4] T. Nie, “Post layout watermarking design method for IP protection,”
Ph.D. dissertation, Kochi University, Dept. of Information Science,
2008.

[5] A. Cui, C.-H. Chang, and L. Zhang, “A hybrid watermarking scheme
for sequential functions,” in Proceedings of the 2011 IEEE International
Symposium on Circuits and Systems (ISCAS), pp. 2333–2336.

[6] D. Ziener and J. Teich, “Power signature watermarking of IP cores for
FPGAs,” J. Signal Process. Syst., vol. 51, no. 1, pp. 123–136, Apr.
2008.

[7] D. Ziener, F. Baueregger, and J. Teich, “Multiplexing methods for
power watermarking,” in Proceedings of the 2010 IEEE International
Symposium on Hardware-Oriented Security and Trust (HOST), pp. 36–
41.

[8] A. Abdel-Hamid, S. Tahar, and E. Aboulhamid, “IP watermarking
techniques: survey and comparison,” in Proceedings of the 3rd IEEE
International Workshop on System-on-Chip for Real-Time Applications,
2003, pp. 60–65.

[9] ——, “A tool for automatic watermarking of IP designs,” in Proceedings
of the 2nd Annual IEEE Northeast Workshop on Circuits and Systems
(NEWCAS), 2004, pp. 381–384.

[10] ——, “A public-key watermarking technique for IP designs,” in Pro-
ceedings of the 2005 Design, Automation and Test in Europe Conference
& Exhibition, 2005, pp. 330–335 Vol. 1.

[11] ——, “Finite state machine IP watermarking: A tutorial,” in Proceed-
ings of the 1st NASA/ESA Conference on Adaptive Hardware and
Systems, 2006, pp. 457–464.

[12] R. Chakraborty and S. Bhunia, “HARPOON: An obfuscation-based SoC
design methodology for hardware protection,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 28,
no. 10, pp. 1493–1502, 2009.

[13] R. W. P. Meana, “Approximate sub-graph isomorphism for watermark-
ing finite state machine hardware,” Master’s thesis, University of South
Florida, Dept. of Computer Science and Engineering, 2013.

[14] C. Albrecht, “IWLS 2005 benchmarks,” in 14th International Workshop
on Logic and Synthesis, 2005.

[15] Synopsys Inc., “Synopsys 32/28nm Generic Library,” Available :
http://www.synopsys.com/Community/UniversityProgram.

[16] H. Bhatnagar, Advanced ASIC Chip Synthesis Using Synopsys R⃝ Design
Compiler R⃝, Physical Compiler R⃝ and PrimeTime R⃝. Springer, 2002.


