
SUT-RNS Residue-to-Binary Converters Design

Evangelos Vassalos, Dimitris Bakalis
Electronics Laboratory, Dept. of Physics

University of Patras
Patras, Greece

vassalos@upatras.gr, bakalis@physics.upatras.gr

Haridimos T. Vergos
Dept. of Computer Engineering & Informatics

University of Patras
Patras, Greece

vergos@ceid.upatras.gr

Abstract—The Stored Unibit Transfer (SUT) encoding has been
recently proposed as a redundant high-radix encoding for each of
the channels of a Residue Number System (RNS) that can
improve the efficiency of Binary Signed Digit (BSD)-encoded
RNS. However, a residue-to-binary (reverse) converter for it has
not yet been reported in the open literature. In this paper we
introduce SUT-RNS reverse converters for two different moduli
sets, that is, for the 3-moduli {2n-1, 2n, 2n+1} and for the 4-moduli
{2n-1, 2n, 2n+1, 22n+1} sets. The area and delay costs of the
proposed converters are shown to be less than those required by
the corresponding RNS converters for the BSD encoding. In the
4-moduli set case, the converters’ costs are shown to be close to
those of the corresponding converters for the binary encoding.

Keywords-Redundant arithmetic; residue number system;
reverse converter; stored unibit transfer;

I. INTRODUCTION
The Residue Number System (RNS) [1] [2] is a carry-

limited number system commonly adopted for speeding-up
computations in digital signal processing [3] [4], cryptography
[5] [6] and communication units [7]. An RNS is characterized
by a set {m1, m2, …, mp} of p moduli that are pair-wise
relatively prime. An integer A, with 0 � A < M, where M =
m1×m2×…×mp, has a unique representation in the RNS given
by the set of residues {a1, a2, …, ap}, where ai is the least non-
negative remainder of the division of A by mi, with i = 1, …, p.
An arithmetic operation ⊗ on two RNS operands A and B is
defined as Z=A⊗B ↔ (z1, …, zp) = (a1, …, ap) ⊗ (b1, …, bp),
where

imiii baz ⊗= is the residue of ai⊗bi taken modulo mi.

This means that all arithmetic operations are performed on
narrow residues instead of wide operands, while also being
carried out in parallel in separate arithmetic units known as
channels. Furthermore, no carry propagation exists between
any two channels, making high-speed parallel arithmetic
processing possible. RNSs built on moduli of the 2n±1 forms
have received significant attention due to the efficient
architectures that have been proposed for the design of the
respective arithmetic components.

Several contemporary applications require high dynamic
ranges making the carry propagation in the computations a
speed-limiting factor. A typical example is cryptosystems.
Although RNS can be used for speeding-up computations in
those applications (see for example [5] [6] for asymmetric
ciphers), the remaining intra-channel carry propagation can
still be large. In order to reduce the intra-channel carry

propagation in RNS, redundant encodings have been proposed
for the residues inside each channel. The Binary Signed Digit
(BSD) encoding [8], which uses the digit set {-1, 0, +1}, was
one of the first considered [9-11]. Due to its redundancy, the
length of carry propagation chain is limited to only one digit
position, instead of the entire operand length. Thus, BSD
offers constant-time addition independently of the operands’
width. On the other hand, each BSD digit requires two bits for
its encoding and dedicated building blocks have to be used in
the design of arithmetic circuits, leading to large area and
routing overheads. In order to decrease the added costs related
to BSD, hybrid redundant encodings, such as those with
weighted two-valued digit sets have been alternatively
proposed [12] [13]. These encodings offer a tradeoff between
the area and routing overheads and the carry propagation time.
Furthermore, they can utilize standard building blocks such as
full or half adders instead of custom ones, resulting that way
to more efficient implementations. A hybrid redundant
encoding that has been recently proposed for the modulo 2n±1
channels’ operands, along with efficient architectures for
modulo 2n±1 addition, subtraction, multiplication and
encoding conversion, is the SUT-RNS encoding [14-16],
which is briefly reviewed in section II.

In every RNS system, the operands must be converted from
their binary representation to their corresponding residues and
vice versa. The reverse (residue-to-binary) conversion is a
complex process and should be efficiently realized so as to
prevent performance degradation of the overall RNS system.
An extensive amount of research has been done on the design
of efficient RNS reverse converters for various moduli sets
assuming either a binary [17-22] or a BSD encoding [10] [11]
at the converters’ inputs. All these converters are based on the
Chinese Remainder Theorem (CRT), the New Chinese
Remainder Theorems (New-CRT I and New-CRT II) or the
Mixed-Radix Conversion (MRC) algorithm. However, besides
a preliminary attempt to convert a single modulo 2n±1 operand
from/to its binary-RNS to/from its SUT-RNS encoding [16],
no reverse converter of any moduli set has been presented so
far for the SUT-RNS encoding.

In this paper we deal with the problem of designing
efficient RNS reverse converters for the SUT-RNS encoding.
We consider two different moduli sets: (a) the well-known 3-
moduli set {2n-1, 2n, 2n+1} which has a dynamic range
approximately equal to 3n bits, and (b) the 4-moduli set {2n-1,
2n, 2n+1, 22n+1} which has a larger dynamic range
approximately equal to 5n bits. Efficient reverse converters for
them exist both for a binary [18] [20] and a BSD [11]

2012 15th Euromicro Conference on Digital System Design

978-0-7695-4798-5/12 $26.00 © 2012 IEEE

DOI 10.1109/DSD.2012.121

16

2012 15th Euromicro Conference on Digital System Design

978-0-7695-4798-5/12 $26.00 © 2012 IEEE

DOI 10.1109/DSD.2012.121

65

2012 15th Euromicro Conference on Digital System Design

978-0-7695-4798-5/12 $26.00 © 2012 IEEE

DOI 10.1109/DSD.2012.121

65

encoding at the converters’ inputs, which enables a
comparison with the proposed converters. Their evaluation
reveals that they are far more efficient, in terms of area and
delay, than the corresponding converters for the BSD
encoding while in the 4-moduli set case the overhead of the
proposed converters, compared to the corresponding
converters for the binary encoding, is very small.

The rest of the paper is organized as follows. The next
section briefly reviews the SUT-RNS encoding. Section III
presents some properties that are useful in the reverse
conversion and introduces the converters for the two moduli
sets. Section IV compares the proposed converters against the
corresponding converters for the binary and the BSD encoding.
The last section concludes.

II. REDUNDANT HIGH-RADIX SUT-RNS ENCODING
SUT-RNS has been proposed as a redundant, high-radix

encoding for RNS-based systems with moduli of the 2n±1
forms. Architectures for the design of modulo 2n±1 adders,
subtractors and multipliers according to this encoding have
been recently presented [14] [15]. The SUT-RNS can be also
used for the modulo 2n channel of an RNS and modulo 2n
arithmetic units can be easily derived based on [12] and [13].
The main advantage of the SUT-RNS encoding, against the
BSD, is its ability to use standard building blocks (full adders,
half adders) in the design of the corresponding arithmetic
units. Furthermore, compared to the BSD encoding, the SUT-
RNS encoding reduces significantly the area and routing
overhead at the cost of a small increase in delay, while the
selection the radix value in SUT-RNS can be used to trade-off
between these two parameters. Hence, the SUT-RNS encoding
is perfectly suited for applications having large dynamic
ranges and strict area and delay constraints.

Every SUT-encoded number is composed of SUT digits.
Each SUT digit consists of several two-valued digits (twits) of
three types: posibits {0, +1}, negabits {−1, 0}, and unibits
{−1, +1} [12]. A posibit has a lower value equal to 0 whereas
a negabit and a unibit have a lower value equal to −1. All three
types of twits require one bit for their representation and use
bias encoding, that is, their lower value is encoded in binary
with the logical 0 whereas their upper value is encoded in
binary with logical 1. The dot and symbolic notations along
with the binary encodings of the twits are listed in Table I.
Hereafter, the symbolic notation of a twit will be used to
denote its logical value and not its arithmetic value.

Every SUT-RNS-encoded number consists of k radix-2h
SUT digits. The symbolic and dot notation, of a k-digit
(Dk-1…D0) radix-2h SUT-RNS-encoded number X, are shown
in Fig. 1. The negabits and the posibits represent the main part
of X whereas the unibits represent the transfer part of X. Each
radix-2h SUT digit consists of (h+1) twits, that is, (h−1)
posibits, 1 negabit and 1 unibit. In every SUT digit, the
negabit along with the (h−1) posibits, each having a distinct
weight equal to a power of 2, represent a number in the [−2h-1,
+2h-1− 1] range. Since the minimum and maximum values of
Di, 0 � i < k, are equal to)12(1 +− −h and 12 −+ h , respectively,

TABLE I. BINARY ENCODING, DOT AND SYMBOLIC NOTATION OF TWITS

Twit Dot notation Symbolic notation Lower value Upper value
Negabit Xi 0 (−1) 1 (0)
Posibit xi 0 (0) 1 (+1)
Unibit x′i 0 (−1) 1 (+1)

Figure 1. (a) Dot and (b) symbolic notation of a k-digit radix-2h SUT-RNS
number X.

and since each Di has a weight equal to 2ih, the maximum
representable number is equal to RX h

MAX ⋅+= −12 , whereas
the minimum representable number is equal to

RX h
MIN ⋅+−= −)12(1 , where)12()12(−−= hkhR .

A modulo 2n+1 (2n-1) number X, X∈[0, 2n] (X∈[0, 2n-1]
assuming a double representation for zero), can be encoded in
SUT-RNS by selecting the appropriate values of k and h so
that n=k×h and by utilizing the positive range of the SUT-RNS
encoding for some values of X and the negative range for the
remaining values.

Example 1
When k=2 and h=3 (n=6), an SUT-RNS encoding can

represent all numbers between -45 and +36. A single radix-8
SUT digit in this case can represent all numbers between -5
and +4. The value 7 can be encoded with two SUT digits as

01 81817 ×−×+=+ . Since +1 and −1 can be written as
0012 212021201 ×−×+×+×=+ and 12 20201 ×+×=−

00 2120 ×−×+ , a possible SUT-RNS encoding of 7 can

be
00

100110
 in both moduli 26-1 and 26+1 cases.

Furthermore, it holds that |37|65 = |-28|65 and |37|63 = |-26|63.
Hence, the value 37 can be encoded in SUT-RNS as

01 848328 ×−×−=− in modulo 26+1 and can be encoded as
01 828326 ×−×−=− in modulo 26-1 arithmetic. Since values

−3, −4 and −2 can be written as
0012 212020213 ×+×+×+×−=− ,

12 20214 ×+×−=−
00 2121 ×−×+ , and 0012 212121212 ×−×+×+×−=− , two

possible SUT-RNS encodings of 37 in modulo 26+1 and 26-1

can be
01

001000
 and

01
011000

 respectively. �

III. RESIDUE-TO-BINARY CONVERTERS
Before introducing the reverse converters for the two

moduli sets, we present some properties that are useful in their
design.

176666

Let
 0

021

)1(

)1(21

x
xxX

x
xxX

X hh

hk

hkkhkh

′′= −−

−

−−− �
�

�

denote a

k digit radix-2h SUT-RNS encoded number (see Fig. 1). X is
composed of posibits, negabits and unibits. Let also

01 yyY n �−= and 01 zzZ n �−= denote two n-bit vectors,
where 11 −− = ihih Xy , ki ≤<0 , jihjih xy −− = , ki ≤<0 ,

hj ≤≤2 , and ihih xz ′=+1 , ki <≤0 , while all the remaining
bits of Z are equal to 0. In other words, Y contains the logical
values of the main part of X, while Z contains the logical
values of the transfer part (unibits) of X shifted one position to
the left.

Property I: Considering the arithmetic values of X, Y and Z, it
holds that: MINXZYX ++=

Proof: Since −1 = 0−1 and 0 = 1−1, every negabit can be
treated as a posibit with the same logical value as long as we
decrease its value by one. Similarly, since −1=2×0−1 and
+1=2×1−1, every unibit can be treated as a doublebit (posibit
with double weight) as long as a correction equal to −1 is also
taken into account. Hence:

MIN
h

k

i

k

i

hiih

XZYRZY

ZYX

++=⋅+−+=

−−+=

−
= =

−−� �
)12(

22

1
1 1

)1(1

�

Property I indicates that we can split an SUT-RNS encoded
number in two binary vectors as long as we include a
correction term. Furthermore, it shows that if we add those
two vectors, Y and Z, with the constant XMIN, then we can get
the value of X in binary.

Consider that m denotes an integer greater than or equal to

zero.

Property II: It holds that:

1212121212
2222

−−−−−
⋅+⋅+⋅=⋅

nnnnn MIN
mmmm XZYX

Proof: The proof is straightforward and is therefore omitted. �

Property II implies that the multiplication of an SUT-RNS
encoded number X by 2m taken modulo 2n-1 can be performed
by: (a) rotating the bits of the two vectors Y and Z m positions
to the left and (b) considering a correction term.

Let Y and Z denote the vectors that result from Y and Z by
inverting the logical values of all their bits except the 0s of Z.

Property III: Considering the arithmetic values of X, Y and
Z , it holds that: MAXXZYX −+=−
Proof: Consider a posibit p∈{0, +1}, a negabit n∈{−1, 0} and
a unibit u∈{−1, +1}. If we denote as p , n , and u the
complements of the logical values of p, n, and u, respectively,
it then holds that 1−=− pp , nn =− , and 12 −=− uu . Hence

X− is equal to the sum of Y and Z as long as we consider a
correction of −1 for every posibit and unibit. The total
correction that is then required is equal to:

MAX
h

k

i
h

kh
hih

khhkhkhkh

XR −=⋅−=
−
−−=−=

=−−−−−−−−−−−

−

=

−−

−+−−−−

� 1

1

11

21)1()1()1(2100

2
12
1222

22222222 ���

�

Property III introduces a way to negate an SUT-RNS
encoded number.

Property IV: It holds that:

1212121212
2222

−−−−−
⋅−⋅+⋅=⋅−

nnnnn MAX
mmmm XZYX

Proof:The proof is straightforward and is therefore omitted. �

Property IV implies that the computation of
12

2
−

⋅− nSUT
m X

can be performed by: (a) rotating the bits of Y and Z m
positions to the left, and (b) considering a correction term.

Example 2
Let X denote a 2-digit radix-24 SUT-RNS-encoded number

(n=k×h=2×4=8) which has a value equal to

.26166162
00

00111011 01 =×−×==X According to

Property I we can compute the value of X if we add
Y=10110011=179, Z=0, and the correction XMIN =
−(23+1)(28+1)/(24−1)=−9×17, that is, X=179+0−153=26.
According to Property II,

12
2

8
2

−
⋅ X can be computed by

rotating each bit of Y and Z two positions to the left
(11001110=206 and 00000000=0) and adding them along with
a correction equal to 1794 ××− . Hence,

10417942062 25512
2

8
=××−=⋅

−
X . According to Property

III, in order to compute –X, we derive Y =01001100=76 and
Z =00100010=34, add them and decrease the resulting binary
value by a constant equal to XMAX=23×17=136. Hence –X =
110–136 = –26. Finally, according to Property IV,

12
2

8
2

−
⋅− X can be computed by rotating every bit of Y and

Z two positions to the left (00110001=49 and 10001000=136)
and decreasing their sum by the constant correction 4×23×17.
Hence, 15110417241852

255255

3

12

2
8 =−=××−=⋅−

−
X . �

In the following, we utilize the CRT and the New CRT-I
theorem in order to derive reverse converters for the SUT-
RNS encoding for two different moduli sets, that is, the 3-
moduli set {2n-1, 2n, 2n+1} which has a dynamic range
approximately equal to 3n bits and the 4-moduli set {2n-1, 2n,
2n+1, 22n+1} which has a dynamic range approximately equal
to 5n bits, respectively. Efficient reverse converters for them
for both the binary and the BSD encodings can be found in
[18], [20] and [11]. Hence, a comparison against the proposed
converters for the SUT-RNS encoding is feasible and will be
given in the next section.

A. Reverse Converter for the {2n-1, 2n, 2n+1} RNS
Consider an RNS with the three-moduli set {2n-1, 2n, 2n+1}

and a 3n-bit number X∈[0, 23n-2n). X can be uniquely
represented in RNS by {x1, x2, x3}, where 121 −= nXx ,

186767

nXx 22 = , 123 += nXx . Utilizing the CRT, X can be
computed from {x1, x2, x3} as [17] [18]:

123212 22 −+++= nTTTxX n
, where

121
121

1 2
)22(

−
−− +=

n
xT nn ,

1222 2
2

−
−=

n
xT n ,

123
121

3 2
)22(

−
−− −=

n
xT nn .

Hence, X can be reconstructed by concatenating the n bits of
x2 with the 2n bits derived by the sum of the Ti terms taken
modulo 22n-1.

Assume that x1, x2, x3 are SUT-RNS encoded according to
Fig. 1. x1, x2, x3 consist of posibits, negabits and unibits. Then,
the n bits of the binary encoding of x2 can be derived
according to Property I. The derivation of each Ti term along
with its corresponding correction is based on Properties I-IV.
For example, when n=k×h=2×4=8, the binary vectors along
with the correction term of each Ti term are shown in Fig. 2.
Specifically, the correction for the term T1 is derived by
applying Property II, that is

12
1121

12
121

22
)12)(22()22(

−
−−−

−
−− ++−=+

nn
RX hnn

MIN
nn .

Property IV is applied in order to derive the correction for
term T2, that is

12
1

12 22
222

−
−

−
−=−

nn
RX hn

MAX
n .

Accordingly, by employing again Properties II and IV, we
derive the correction for term T3. The closed forms that are
given for the correction terms hold for every combination of n,
k and h. We can unify all required corrections for the Ti terms
into a single 2n-bit correction term equal to:

12
1112

3 22)12()22(
−

−+− +−+−= nRRC hnnn

The last row of Fig. 2 presents the binary value of the C3
correction term when n=k×h=2×4=8. A Dadda adder tree
composed of full and half adders can be used to compress the
bits of the terms T1, T2, T3 and C3 of Fig. 2 in two 2n-bit
vectors that can then be driven to a parallel modulo 22n-1
adder in order to derive the 2n most significant bits of X. The
constant bits of the C3 term can be utilized for simplifying the
implementation of the converter circuit.

B. Reverse Converter for the {2n-1, 2n, 2n+1, 22n+1} RNS
Consider an RNS with the four-moduli set {2n-1, 2n, 2n+1,

22n+1} and a 5n-bit number X∈[0, 25n-2n). X can be uniquely
represented in RNS by {x1, x2, x3, x4}, where

121 −
= nXx ,

nXx 22 = , 123 += nXx , 124 2 += nXx . According to the New
CRT-I theorem, X can be computed from {x1, x2, x3, x4} as
[11] [20]:

1243212 42 −++++= nTTTTxX n , where

121
22

1 4)12)(12(2
−

− ++= nxT nnn ,
122

3
2 42

−
−= nxT n ,

123
2222

3 4)22)(12(
−

−− −+= nxT nnn and

124
113

4 4)22(
−

−− −= nxT nn .

Hence, X can be reconstructed by concatenating the n bits of
x2 with the 4n bits derived by the sum of the Ti terms taken
modulo 24n-1.

Assume that x1, x2, x3, x4 are SUT-RNS encoded. Obviously,
x4 has twice SUT digits compared to the other three residues.
The n bits of the binary encoding of x2 can be derived
according to Property I. The derivation of each Ti term can be
based on Properties I-IV similarly to the previous moduli set
case. For example, when n=k×h=2×3=6, the binary vectors
along with the correction term of each Ti term are shown in
Fig. 3. The closed forms that are given for the correction terms
also hold for every combination of n, k and h. We can unify all
required corrections for the Ti terms into a single 4n-bit
correction term equal to:

12
13

11131221324

111213314
4

42

2)22()2222(

2)22222(

−
∗−

∗−−−−−−−

−−−−−

−

+−+++−

++++−=

nR

RR

RC

n

hnnnnnn

hnnnnn

where
12
12* 2

−
−= h

kh
R . The last row of Fig. 3 presents the

binary value of the C4 correction term when n=k×h=2×3=6. A
Dadda adder tree can be used to compress the bits of the terms
T1-T4 and C4 of Fig. 3 in two 4n-bit vectors. Then, a parallel
modulo 24n-1 adder can derive the 4n most significant bits of
X. The constant bits of the C4 term can be utilized for
simplifying the implementation of the converter circuit.

C. Sign Detection
An SUT-RNS encoded number can have a positive or a

negative value (see Example 1). The CRT and the New CRT-I
are valid for either positive or negative values of the xis.
However, an issue arises with the modulo 2n channel.

TERM BINARY VECTOR CORRECTION

 215 214 213 212 211 210 29 28 27 26 25 24 23 22 21 20

T1
0,1x 7,1X 6,1x 5,1x 4,1x 3,1X 2,1x 1,1x 0,1x 7,1X 6,1x 5,1x 4,1x 3,1X 2,1x 1,1x

12

1121
2)12)(22(

−

−−− ++− nRhnn
 4,1x′ 0,1x′ 4,1x′ 0,1x′

T2
7,2X 6,2x 5,2x 4,2x 3,2X 2,2x 1,2x 0,2x

12

1
222

−

−− nRhn
 4,2x′ 0,2x′

T3
0,3x 7,3X 6,3x 5,3x 4,3x 3,3X 2,3x 1,3x 0,3x 7,3X 6,3x 5,3x 4,3x 3,3X 2,3x 1,3x

12

11211
222)12(2

−

−−−− −+− nRR hnhn
 4,3x′ 0,3x′ 4,3x′ 0,3x′

C3 0 1 0 1 1 1 1 0 0 1 1 0 1 1 1 0 12

1112
22)12()22(

−

−+− +−+− nRR hnnn

 Figure 2. Binary vectors and correction terms for the {2n-1, 2n, 2n +1} reverse converter when n=8 (k=2, h=4)

196868

TERM BINARY VECTOR CORRECTION

 223 222 221 220 219 218 217 216 215 214 213 212 211 210 29 28 27 26 25 24 23 22 21 20

T1
 1,1x 0,1x 5,1X 4,1x 3,1x 2,1X 1,1x 0,1x 5,1X 4,1x 3,1x 2,1X 1,1x 0,1x 5,1X 4,1x 3,1x 2,1X 1,1x 0,1x 5,1X 4,1x 3,1x 2,1X

12
1

223

4)12)(12(

)22(

−
−

−−

++−

+−

nR
R

hn

nn

 0,1x′ 3,1x′ 0,1x′ 3,1x′ 0,1x′ 3,1x′ 0,1x′ 3,1x′

T2
 5,2X 4,2x 3,2x

2,2X 1,2x
0,2x

12

13
422

−

−− nRhn
 3,2x′ 0,2x′

T3
 1,3x

0,3x 5,3X 4,3x 3,3x 2,3X 1,3x 0,3x
5,3X 4,3x 3,3x 2,3X 1,3x 0,3x 5,3X 4,3x 3,3x 2,3X 1,3x 0,3x 5,3X 4,3x 3,3x 2,3X

12
122

1222

4)12)(12(2

2)12(2

−
−−

−−

++−

+−

nR
R

hnn

hnn

 0,3x′ 3,3x′ 0,3x′ 3,3x′ 0,3x′ 3,3x′ 0,3x′ 3,3x′

T4
 6,4x 5,4X 4,4x 3,4x 2,4X 1,4x 0,4x

11,4X 10,4x 9,4x
8,4X 7,4x 6,4x 5,4X 4,4x 3,4x 2,4X 1,4x 0,4x 11,4X 10,4x 9,4x 8,4X 7,4x

12
*11

113

422

)12(2

−
−−

∗−−

−

+−

nR
R

hn

hn

 3,4x′ 0,4x′ 9,4x′ 6,4x′ 3,4x′ 0,4x′ 9,4x′ 6,4x′

C4 1 1 1 1 1 0 0 1 1 0 0 1 0 0 0 1 1 0 1 1 0 0 1 1

12
131113

1221324

1112

113314

422)22(
)2222(

2)22(

2)222(

−
∗−∗−−−

−−−−

−−−

−−−

−+−

+++−

+−

++−

nRR
R

R
R

nhnn

nnnn

hnn

hnnn

 Figure 3. Binary vectors and correction terms for the {2n-1, 2n, 2n+1, 22n+1} reverse converter when n=6 (k=2, h=3).

Let us first consider the 3-moduli set {2n-1, 2n, 2n+1}.

According to the CRT theorem, 123212 22 −+++= nTTTxX n .
Assume that x2 is SUT-RNS encoded in the negative value

range. Then, its corresponding positive value is equal to 2n+x2
and

122122122 222 12)2(2
−−− −−=+−=

nnn xxT nnn . Although

the CRT theorem is still valid, in hardware, an adder is
required in order to propagate the carry from the n least
significant bits to the 2n most significant positions resulting in
a significant overhead in the converter. To avoid this, we can
simply detect the sign of x2 and decrease the value of C3 by
one when x2 is less than 0, while deriving the n least
significant bits of the output of the reverse converter utilizing
Property I.

The same holds for the 4-moduli set {2n-1, 2n, 2n+1, 22n+1}.
According to the New CRT-I theorem,

1243212 42 −++++= nTTTTxX n . Assume that x2 is SUT-
RNS encoded in the negative value range. Then, its
corresponding positive value is equal to 2n+x2 and

122
3

122
3

122 444 12)2(2
−−− −−=+−=

nnn xxT nnn .Hence,

similarly to the 3-moduli set case, we can simply detect the
sign of x2 and decrease the value of C4 by one when x2 is less
than 0, while deriving the n least significant bits of the output
of the reverse converter utilizing Property I.

Consider an SUT-RNS encoded number X with k SUT
digits (Dk-1…D0) as the one given in Fig. 1. The sign of X can
be determined by the sign of the first non-zero digit with the
maximum weight. Zero is represented in an SUT digit as

1
1101�

 or
0

0110�
. If we denote as

 �
�
�

=
≠

=
01
00

i

i
i D

D
ZD

the zero indication of the i-th SUT digit, ki <≤0 , then its
value is given by the logic equation:

)(

)(

12)1(1)1(

12)1(1)1(

ihihihhihi

ihihihhihii

xxxxX
xxxxXZD
′∧∧∧∧∧∨

′∧∧∧∧∧=

+−+−+

+−+−+

�
�

where ∨ and ∧ denote logical OR and AND, and can be
realized with two (h+1)-input AND gates and one two-input
OR gate.

All SUT digits with negabits equal to logic 0 represent non-
positive numbers. Furthermore, when a negabit has a logic
value equal to 1 then it represents a non-negative number. The

only exception is the SUT digit

0
0010�

 which, although

has a negabit with a logic value equal to 1, represents a

negative number (–1). If we denote as
�
�
�

<
>

=
01
00

i

i
i D

D
SD the

sign indication of the i-th SUT digit, ki <≤0 , then its value
is given by the logic equation �∧= −+ 2)1((hii xSD

1)1(1) −++ ∨′∧∧ hiihih Xxx and can be realized with a (h-1)-input
AND gate and a two-input OR gate. Hence, the sign of the

SUT-RNS encoded number X,
�
�
�

<
≥

=
01
00

X
X

S X , is given by

the logic equation:

)(

()(

0011

22111

SDZDZDZD

SDZDZDSDZDS

k

kkkkkX

∧∧∧∧∨

∨∧∧∨∧=

−

−−−−−

�

�

The corresponding circuit is graphically presented in Fig. 4.

Once the sign of x2, 2xS , is derived, it can be utilized to
decrease the value of C3 or C4 by one when x2<0. Since, for
every bit S it holds that 1−=− SS , an efficient way to deal
with

2xS is to decrease the value of C3 or C4 by one and add

2xS in the least significant bit position in the Dadda adder tree.
Fig. 5 presents the complete architectures of the proposed
reverse converters for the two moduli sets.

It should be noted that the computation of
2xS is not

expected to delay the addition of the required bits in the Dadda

206969

Di

ZD
ZDk-1

...

Dk-1

Sign Detection

...

Sx

SD
SDk-1

ZD
ZDk-2

Dk-2

SD
SDk-2

ZD
ZD1

D1

SD
SD1

ZD
ZD0

D0

SD
SD0

...

ZDi

...
...

SDi

Di

...

SD

ZD

...

Figure 4. Block diagram of the sign detection circuit for X.

 (a) (b)
Figure 5. The proposed converter architectures for the (a) {2n-1, 2n, 2n+1}
moduli set and (b) {2n-1, 2n, 2n+1, 22n+1} moduli set.

adder tree of the reverse converters. This is due to the
following: (a) x2 corresponds to the modulo 2n channel and
this channel is usually faster than the rest channels of the 2n-1,
2n+1, 22n+1 forms. It is therefore expected that the delay of the
sign detection of x2 will be hidden within the increased delay
of the other channels. (b) The

2xS bit can be always driven to
the last level of the adder tree and therefore part of the delay
for its derivation can be hidden within the delay of the full
adders and half adders of the preceding levels of the adder
tree.

IV. EVALUATION AND COMPARISONS
In this section we evaluate the proposed residue-to-binary

converters for the SUT-RNS encoding and compare them
against the corresponding converters that use the BSD
encoding at their inputs, while comparison with the binary
encoded converters is also given for completeness. For the two
latter cases we assume the architectures proposed in [11], [18]
and [20] which are considered the current state-of-the-art.

While the binary encoded and the proposed SUT-RNS
encoded reverse converters make use of conventional
arithmetic units, such as full adders and half adders, this is not
the case for the BSD encoded ones that utilize dedicated
building cells. Thus, comparisons based on the number of full

adders, half adders and carry-propagate adders used cannot be
given. An area-delay comparison of the various converters can
be based on the unit gate model [23]. The unit gate model
assumes that each monotonic gate counts as one gate
equivalent for both area and delay, while two-input XOR and
XNOR gates count for two gate equivalents for both area and
delay.

Table II presents the total area and delay estimations of the
proposed converters for the 3-moduli set {2n-1, 2n, 2n+1}
according to the unit-gate model. We assume that h is greater
than 2. The n least significant bits of the output can be derived
according to Property I by a two-operand binary parallel-
prefix adder along with k inverters while the 2n most
significant bits of the output can be derived by a Dadda adder
tree, a modulo 22n-1 parallel-prefix adder with single zero
representation at the output and the sign detection circuit for
x2. The delay of the Dadda adder tree is equal to the delay of
two full adders and one half adder (or a simplified full adder
with one of its inputs connected to logic 1) since the maximum
number of bits with the same weight that have to be added
(see for example Fig. 2) is equal to 6 while one of them has a
constant value. Considering the delay, we provide in Table II
both an optimistic estimate that does not consider the delay of
the x2 sign detection, assuming that the x2 input is available
earlier than the other inputs, as well as a pessimistic one that
assumes that all inputs are available at the same time. Table II
also presents the total area and delay estimates of the binary
and BSD-encoded reverse converters for the 3-moduli set {2n-
1, 2n, 2n+1} assuming the architectures presented in [18] and
[11] respectively. In all converters, the modulo 2n parallel-
prefix adders assume a Kogge-Stone architecture whereas all
modulo 22n-1 parallel-prefix adders assume the architecture of
[24] along with 2n NOR gates at the output for providing a
single zero representation.

Similarly to the 3-moduli set case, Table III presents the
total area and delay estimations of the proposed converters for
the 4-moduli set {2n-1, 2n, 2n+1, 22n+1} according to the unit-
gate model. We again assume that h is greater than 2. The n
least significant bits of the output can be derived as in the
previous case while the 4n most significant bits of the output
can be derived by a Dadda adder tree, a modulo 24n-1 parallel-
prefix adder with single zero representation at the output and

TABLE II. UNIT-GATE AREA AND DELAY CLOSED FORMS FOR THE {2N-1, 2N,
2N+1} REVERSE CONVERTER

Converter Delay (eq. gates) Area (eq. gates)

Proposed
MIN: 2logn + 16

MAX: 2logn + 10 +
max{log[2k(k+1)(h+1)], 6}

9nlogn + 33n
+ k/2(k+73) +14

[18] 2logn + 11 6nlogn + 31n
[11] 2logn + 22 15nlogn + 113n + 24

TABLE III. UNIT-GATE AREA AND DELAY CLOSED FORMS FOR THE
{2N-1, 2N, 2N+1, 22N+1} REVERSE CONVERTER

Converter Delay (eq. gates) Area (eq. gates)

Proposed
MIN: 2logn + 22

MAX: 2logn + 12+
 max{log[2k(k+1)(h+1)], 10}

15nlogn + 95n
+ k/2(k+185) +14

[20] 2logn + 20 12nlogn + 111n + 39
[11] 2logn + 24 27nlogn + 333n + 24

217070

the sign detection circuit for x2. The delay of the Dadda adder
tree is equal to the delay of three full adders and one half
adder (or a simplified full adder) since, in this moduli set case,
the maximum number of bits with the same weight that have
to be added (see for example Fig. 3) is equal to 7 with one of
them being constant. We again provide in Table III both an
optimistic and a pessimistic estimate regarding the delay.
Table III also presents the total area and delay estimates of the
binary and BSD-encoded reverse converters for the 4-moduli
set {2n-1, 2n, 2n+1, 22n+1} assuming the architectures
presented in [20] and [11] respectively. We make the same
assumptions as before for the modulo 2n parallel-prefix adders
and the modulo 24n-1 parallel-prefix adders.

Fig. 6 (Fig. 7) graphically compares the unit-gate area and
delay of the three 3-moduli set (4-moduli set) reverse
converters for values of n up to 64 covering dynamic ranges
up to 320 bits. We consider four different values of h. We
observe that the delay of the proposed converters lies between
those of the reverse converters for the binary and the BSD
encoding while the area of the proposed converters is close to
the area required by the converters for the binary encoding and
is significantly smaller than that required by the converters for
the BSD encoding, especially for large values of n.
Furthermore, for a given value of n, increasing h reduces the
area and the delay of the corresponding proposed converters.
This is justified by the fact that a large value of h leads to a
small number of SUT digits. Finally, the differences between
the area and the delay of the proposed converters and the
binary-encoded ones are much smaller in the 4-moduli set case
than in the 3-moduli set case.

The unit-gate model estimations for area and delay can only
be considered as indicative. Furthermore, the unit-gate model
does not consider power dissipation. To attain realistic results,
reverse converters for three values of n were described in
HDL. For the SUT-RNS case we assumed a value of h equal
to four. The delay of the sign detection circuit for x2 was taken
into account in all cases. After simulating the resulting
descriptions, the converters were synthesized and mapped to a
90 nm power-characterized CMOS implementation
technology [25]. The Synopsys Design Compiler tool in the
topographical mode was used for the synthesis and mapping of
the converters. In this mode, for achieving faster timing
closure, the tool performs floorplanning in parallel with
synthesis and mapping and the design is annotated with wiring
lengths and fan-out and parasitic capacitances coming directly
from the floorplan of the design and not from a wire load
model. We assumed that each converter’s input and output is
driven by the output of a D flip flop and drives the input of a
D flip flop of the same implementation library, respectively. A
typical corner (1.2V, 25oC) was considered. Each converter
was recursively optimized for speed using a bottom-up
approach. A final area recovery step was then applied. For
obtaining power data, we assumed an operating 400MHz
frequency at each design and equiprobable inputs and
measured the average power dissipation. Table IV presents the
attained area, delay and power dissipation results. The results
validate the conclusions that were previously reported
regarding the area and the delay of the various converters.
Furthermore, the results indicate that the average power
dissipation of the proposed reverse converters is also
significantly smaller than that of the converters for the BSD
encoding.

15

20

25

30

35

40

0 10 20 30 40 50 60

Delay
(eq. gates)

n

[18] [11]
PROPOSED (TSx2=0) PROPOSED (h=4)
PROPOSED (h=8) PROPOSED (h=6)
PROPOSED (h=3)

0

5000

10000

15000

20000

25000

0 10 20 30 40 50 60

Area
(eq. gates)

n

[18] [11]
PROPOSED (h=3) PROPOSED (h=4)
PROPOSED (h=6) PROPOSED (h=8)

 (a) (b)

Figure 6. Unit-gate (a) delay and (b) area estimations for the 3-moduli set reverse converter.

15

20

25

30

35

40

0 10 20 30 40 50 60

Delay
(eq. gates)

n

[20] [11]
PROPOSED (TSx2=0) PROPOSED (h=3)
PROPOSED (h=4) PROPOSED (h=8)
PROPOSED (h=6)

0

5000

10000

15000

20000

25000

0 10 20 30 40 50 60

Area
(eq. gates)

n

[20] [11]
PROPOSED (h=3) PROPOSED (h=4)
PROPOSED (h=6) PROPOSED (h=8)

 (a) (b)

Figure 7. Unit-gate (a) delay and (b) area estimations for the 4-moduli set reverse converter.

227171

TABLE IV. CMOS VLSI AREA, DELAY AND AVERAGE POWER DISSIPATION
RESULTS

 Binary-RNS BSD-RNS SUT-RNS

n k h
 Delay

(ns)
Area
(�m2)

Power
(mW)

 Delay
(ns)

Area
(�m2)

Power
(mW)

 Delay
(ns)

Area
(�m2)

Power
(mW)

{2n-1, 2n, 2n+1} reverse converters
8 2 4 1.00 6365 1.65 1.78 19771 8.40 1.27 8810 2.52

16 4 4 1.15 14919 3.87 1.95 44123 18.75 1.42 20749 6.14
32 8 4 1.33 34231 8.88 2.05 99216 41.44 1.57 48123 14.34
{2n-1, 2n, 2n+1, 22n+1} reverse converters
8 2 4 1.49 17385 6.57 1.95 50641 23.21 1.60 19538 7.51

16 4 4 1.63 39159 14.84 2.09 110974 51.30 1.74 44145 16.99
32 8 4 1.82 87289 33.84 2.31 240411 113.60 1.89 99570 34.35

V. CONCLUSIONS
Redundant encodings can be used to reduce the carry

propagation and the delay inside each channel of an RNS.
SUT has been proposed as a redundant high-radix encoding
for RNS that can significantly improve the area and routing
costs compared to the BSD-encoded RNS with only a small
increase in delay. In this paper, we have introduced residue-to-
binary converters for the SUT-RNS encoding for two
representative moduli sets, that is, for the {2n-1, 2n, 2n+1} and
the {2n-1, 2n, 2n+1, 22n+1} sets. The evaluation of the
proposed converters has shown that they are more efficient,
both in terms of area and delay, than the corresponding
converters that utilize the BSD encoding. Hence, the SUT-
RNS encoding can be effectively utilized in RNS-based
applications that require high dynamic ranges with strict area
and delay constraints. The methodology that has been
introduced for the proposed reverse converters can be easily
applied to the design of reverse converters for other moduli
sets as well such as those reported in [21].

ACKNOWLEDGMENT
This research was supported by the Caratheodory

Programme of the University of Patras (D.178).

REFERENCES
[1] P. V. Ananda Mohan, Residue number systems: algorithms and

architectures. Norwell, MA: Kluwer Academic, 2002.
[2] A. Omondi and B. Premkumar, Residue number systems: theory and

implementation. London: Imperial College Press, 2007.
[3] R. Chaves and L. Sousa, “RDSP: A RISC DSP based on Residue

Number System,” In Proc. 6th Euromicro Symp. Digital System Design,
2003, pp. 128–135.

[4] G. C. Cardarilli, A. Nannarelli and A. Re, “Residue Number System for
low-power DSP applications,” In Proc. 41st Asilomar Conf. Signals,
Systems and Computers, 2007, pp. 1412–1416.

[5] J. C. Bajard and L. Imbert, “A full RNS implementation of RSA,” IEEE
Trans. Comput., vol. 53, no. 6, pp. 769–774, 2004.

[6] D. Schinianakis, A. Fournaris, H. Michail, A. Kakarountas and T.
Stouraitis, “An RNS implementation of an Fp elliptic curve point
multiplier,” IEEE Trans. Circuits Syst. I, vol. 56 no. 6, pp. 1202–1213,
2009.

[7] A. Madhukumar and F. Chin, “Enhanced architecture for Residue
Number System-based CDMA for high-rate data transmission,” IEEE
Trans. Wireless Commun., vol. 3, no. 5, pp. 1363–1368, 2004.

[8] A. Avizienis, “Signed-digit number representation for fast parallel
arithmetic,” IRE Trans. Electronic Comput., vol. EC-10, no.3, pp. 389–
400, 1964

[9] S. Wei and K. Shimizu, “A novel residue arithmetic hardware algorithm
using a Signed-Digit number representation,” IEICE Trans. Inform.
Systems, vol. E83-D, no. 12, pp. 2056–2064, 2000.

[10] A. Lindstrom, M. Nordseth, L. Bengtsson and A. Omondi, “Arithmetic
circuits combining residue and signed-digit representations,” In Proc.
Asia-Pacific Comput. Systems Archit. Conf., 2003, pp. 246–257.

[11] A. Persson and L. Bengtsson, “Forward and reverse converters and
moduli set selection in signed-digit Residue Number Systems,” J. Signal
Process. Syst., vol. 56, no. 1, pp. 1–15, 2009.

[12] G. Jaberipur, B. Parhami and M. Ghodsi, “Weighted two-valued digit-
set encodings: unifying efficient hardware representation schemes for
redundant number systems,” IEEE Trans. Circuits Syst. I, vol. 52, no. 7,
pp. 1348–1357, 2005.

[13] G. Jaberipur and B. Parhami, “Stored-transfer representations with
weighted digit-set encodings for ultrahigh-speed arithmetic,” IET
Circuits Devices Syst., vol. 1, no. 1, pp. 102–110, 2007.

[14] S. Timarchi and K. Navi, “Arithmetic circuits of redundant SUT-RNS,”
IEEE Trans. Instrum. Meas., vol. 58, no. 9, pp. 2959-2968, 2009.

[15] S. Timarchi and M. Fazlali, “An efficient power-area-delay modulo 2n-1
multiplier,” In Proc. 15th CSI Int. Symp. Comput. Archit. and Digital
Systems, 2010, pp. 157–160.

[16] E. Vassalos, D. Bakalis and H. T. Vergos, “SUT-RNS forward and
reverse converters,” In Proc. IEEE Comput. Society Annual Symp. VLSI,
2010, pp. 11–16.

[17] S. Andraos and H. Ahmed, “A new efficient nemoryless residue to
binary converter,” IEEE Trans. Circuits Syst., vol. 35, no. 11, pp. 1441–
1444, 1988.

[18] Z. Wang, G. Jullien and W. C. Miller, An improved residue-to-binary
converter, IEEE Trans. Circuits Syst. I, vol. 47, no. 9, pp. 1437–1440,
2000.

[19] Y. Wang, X. Song, M. Aboulhamid and H. Shen, “Adder based residue
to binary number converters for (2n-1, 2n, 2n+1),” IEEE Trans. Signal
Process., vol. 50, no. 7, pp. 1772–1779, 2002.

[20] B. Cao, C.-H. Chang and T. Srikanthan, “An efficient reverse converter
for the 4-moduli set {2n-1, 2n, 2n+1, 22n+1} based on the new Chinese
Remainder Theorem,” IEEE Trans. Circuits Syst. I, vol. 50, no. 10, pp.
1296–1303, 2003.

[21] A. Molahosseini, K. Navi, C. Dadkhah, O. Kavehei and S. Timarchi,
“Efficient reverse converter designs for the new 4-moduli sets {2n-1, 2n,
2n+1, 22n+1-1} and {2n-1, 2n+1, 22n, 22n+1} based on New CRTs,” IEEE
Trans. Circuits Syst. I, vol. 57, no. 4, pp. 823–835, 2010.

[22] K. Gbolagade, R. Chaves, L. Sousa and S. Cotofana, “An improved
RNS reverse converter for the {22n+1-1, 2n, 2n-1} moduli set,” In Proc.
Int. Symp. Circuits Syst., 2010, pp. 2103–2106.

[23] A. Tyagi, “A reduced-area scheme for carry-select adders,” IEEE Trans.
Comput., vol. 42, no. 10, pp. 1163–1170, 1993.

[24] L. Kalampoukas, D. Nikolos, C. Efstathiou, H. T. Vergos and J.
Kalamatianos, “High-speed parallel-prefix modulo 2n-1 adders,” IEEE
Trans. Comput., vol. 49, no. 7, pp. 673–680, 2000.

[25] Synopsys Inc., SAED 90nm EDK, 2011,
https://www.synopsys.com/apps/protected/university/members.html.

237272

