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Abstract—The Stored Unibit Transfer (SUT) encoding has been 
recently proposed as a redundant high-radix encoding for each of 
the channels of a Residue Number System (RNS) that can 
improve the efficiency of Binary Signed Digit (BSD)-encoded 
RNS. However, a residue-to-binary (reverse) converter for it has 
not yet been reported in the open literature. In this paper we 
introduce SUT-RNS reverse converters for two different moduli 
sets, that is, for the 3-moduli {2n-1, 2n, 2n+1} and for the 4-moduli 
{2n-1, 2n, 2n+1, 22n+1} sets. The area and delay costs of the 
proposed converters are shown to be less than those required by 
the corresponding RNS converters for the BSD encoding. In the 
4-moduli set case, the converters’ costs are shown to be close to 
those of the corresponding converters for the binary encoding. 

Keywords-Redundant arithmetic; residue number system; 
reverse converter; stored unibit transfer; 

I.  INTRODUCTION  
The Residue Number System (RNS) [1] [2] is a carry-

limited number system commonly adopted for speeding-up 
computations in digital signal processing [3] [4], cryptography 
[5] [6] and communication units [7]. An RNS is characterized 
by a set {m1, m2, …, mp} of p moduli that are pair-wise 
relatively prime. An integer A, with 0 � A < M, where M = 
m1×m2×…×mp, has a unique representation in the RNS given 
by the set of residues {a1, a2, …, ap}, where ai is the least non-
negative remainder of the division of A by mi, with i = 1, …, p. 
An arithmetic operation ⊗ on two RNS operands A and B is 
defined as Z=A⊗B ↔ (z1, …, zp) = (a1, …, ap) ⊗ (b1, …, bp), 
where 

imiii baz ⊗= is the residue of ai⊗bi taken modulo mi. 

This means that all arithmetic operations are performed on 
narrow residues instead of wide operands, while also being 
carried out in parallel in separate arithmetic units known as 
channels. Furthermore, no carry propagation exists between 
any two channels, making high-speed parallel arithmetic 
processing possible. RNSs built on moduli of the 2n±1 forms 
have received significant attention due to the efficient 
architectures that have been proposed for the design of the 
respective arithmetic components. 

Several contemporary applications require high dynamic 
ranges making the carry propagation in the computations a 
speed-limiting factor. A typical example is cryptosystems. 
Although RNS can be used for speeding-up computations in 
those applications (see for example [5] [6] for asymmetric 
ciphers), the remaining intra-channel carry propagation can 
still be large. In order to reduce the intra-channel carry 

propagation in RNS, redundant encodings have been proposed 
for the residues inside each channel. The Binary Signed Digit 
(BSD) encoding [8], which uses the digit set {-1, 0, +1}, was 
one of the first considered [9-11]. Due to its redundancy, the 
length of carry propagation chain is limited to only one digit 
position, instead of the entire operand length. Thus, BSD 
offers constant-time addition independently of the operands’ 
width. On the other hand, each BSD digit requires two bits for 
its encoding and dedicated building blocks have to be used in 
the design of arithmetic circuits, leading to large area and 
routing overheads. In order to decrease the added costs related 
to BSD, hybrid redundant encodings, such as those with 
weighted two-valued digit sets have been alternatively 
proposed [12] [13]. These encodings offer a tradeoff between 
the area and routing overheads and the carry propagation time. 
Furthermore, they can utilize standard building blocks such as 
full or half adders instead of custom ones, resulting that way 
to more efficient implementations. A hybrid redundant 
encoding that has been recently proposed for the modulo 2n±1 
channels’ operands, along with efficient architectures for 
modulo 2n±1 addition, subtraction, multiplication and 
encoding conversion, is the SUT-RNS encoding [14-16], 
which is briefly reviewed in section II. 

In every RNS system, the operands must be converted from 
their binary representation to their corresponding residues and 
vice versa. The reverse (residue-to-binary) conversion is a 
complex process and should be efficiently realized so as to 
prevent performance degradation of the overall RNS system. 
An extensive amount of research has been done on the design 
of efficient RNS reverse converters for various moduli sets 
assuming either a binary [17-22] or a BSD encoding [10] [11] 
at the converters’ inputs. All these converters are based on the 
Chinese Remainder Theorem (CRT), the New Chinese 
Remainder Theorems (New-CRT I and New-CRT II) or the 
Mixed-Radix Conversion (MRC) algorithm. However, besides 
a preliminary attempt to convert a single modulo 2n±1 operand 
from/to its binary-RNS to/from its SUT-RNS encoding [16], 
no reverse converter of any moduli set has been presented so 
far for the SUT-RNS encoding. 

In this paper we deal with the problem of designing 
efficient RNS reverse converters for the SUT-RNS encoding. 
We consider two different moduli sets: (a) the well-known 3-
moduli set {2n-1, 2n, 2n+1} which has a dynamic range 
approximately equal to 3n bits, and (b) the 4-moduli set {2n-1, 
2n, 2n+1, 22n+1} which has a larger dynamic range 
approximately equal to 5n bits. Efficient reverse converters for 
them exist both for a binary [18] [20] and a BSD [11] 

2012 15th Euromicro Conference on Digital System Design

978-0-7695-4798-5/12 $26.00 © 2012 IEEE

DOI 10.1109/DSD.2012.121

16

2012 15th Euromicro Conference on Digital System Design

978-0-7695-4798-5/12 $26.00 © 2012 IEEE

DOI 10.1109/DSD.2012.121

65

2012 15th Euromicro Conference on Digital System Design

978-0-7695-4798-5/12 $26.00 © 2012 IEEE

DOI 10.1109/DSD.2012.121

65



encoding at the converters’ inputs, which enables a 
comparison with the proposed converters. Their evaluation 
reveals that they are far more efficient, in terms of area and 
delay, than the corresponding converters for the BSD 
encoding while in the 4-moduli set case the overhead of the 
proposed converters, compared to the corresponding 
converters for the binary encoding, is very small. 

The rest of the paper is organized as follows. The next 
section briefly reviews the SUT-RNS encoding. Section III 
presents some properties that are useful in the reverse 
conversion and introduces the converters for the two moduli 
sets. Section IV compares the proposed converters against the 
corresponding converters for the binary and the BSD encoding. 
The last section concludes. 

II. REDUNDANT HIGH-RADIX SUT-RNS ENCODING 
SUT-RNS has been proposed as a redundant, high-radix 

encoding for RNS-based systems with moduli of the 2n±1 
forms. Architectures for the design of modulo 2n±1 adders, 
subtractors and multipliers according to this encoding have 
been recently presented [14] [15]. The SUT-RNS can be also 
used for the modulo 2n channel of an RNS and modulo 2n 
arithmetic units can be easily derived based on [12] and [13]. 
The main advantage of the SUT-RNS encoding, against the 
BSD, is its ability to use standard building blocks (full adders, 
half adders) in the design of the corresponding arithmetic 
units. Furthermore, compared to the BSD encoding, the SUT-
RNS encoding reduces significantly the area and routing 
overhead at the cost of a small increase in delay, while the 
selection the radix value in SUT-RNS can be used to trade-off 
between these two parameters. Hence, the SUT-RNS encoding 
is perfectly suited for applications having large dynamic 
ranges and strict area and delay constraints.  

Every SUT-encoded number is composed of SUT digits. 
Each SUT digit consists of several two-valued digits (twits) of 
three types: posibits {0, +1}, negabits {−1, 0}, and unibits 
{−1, +1} [12]. A posibit has a lower value equal to 0 whereas 
a negabit and a unibit have a lower value equal to −1. All three 
types of twits require one bit for their representation and use 
bias encoding, that is, their lower value is encoded in binary 
with the logical 0 whereas their upper value is encoded in 
binary with logical 1. The dot and symbolic notations along 
with the binary encodings of the twits are listed in Table I. 
Hereafter, the symbolic notation of a twit will be used to 
denote its logical value and not its arithmetic value. 

Every SUT-RNS-encoded number consists of k radix-2h 
SUT digits. The symbolic and dot notation, of a k-digit        
(Dk-1…D0) radix-2h SUT-RNS-encoded number X, are shown 
in Fig. 1. The negabits and the posibits represent the main part 
of X whereas the unibits represent the transfer part of X. Each 
radix-2h SUT digit consists of (h+1) twits, that is, (h−1) 
posibits, 1 negabit and 1 unibit. In every SUT digit, the 
negabit along with the (h−1) posibits, each having a distinct 
weight equal to a power of 2, represent a number in the [−2h-1, 
+2h-1− 1] range. Since the minimum and maximum values of 
Di, 0 � i < k, are equal to )12( 1 +− −h  and 12 −+ h , respectively, 

  

TABLE I.  BINARY ENCODING, DOT AND SYMBOLIC NOTATION OF TWITS 

Twit Dot notation Symbolic notation Lower value Upper value
Negabit Xi 0 (−1) 1   (0) 
Posibit xi 0    (0) 1 (+1)
Unibit x′i 0 (−1) 1 (+1)

 
Figure 1.  (a) Dot and (b) symbolic notation of a k-digit radix-2h SUT-RNS 
number X. 
 

and since each Di has a weight equal to 2ih, the maximum 
representable number is equal to RX h

MAX ⋅+= −12 , whereas 
the minimum representable number is equal to 

RX h
MIN ⋅+−= − )12( 1 , where )12()12( −−= hkhR .  

A modulo 2n+1 (2n-1) number X, X∈[0, 2n] (X∈[0, 2n-1] 
assuming a double representation for zero), can be encoded in 
SUT-RNS by selecting the appropriate values of k and h so 
that n=k×h and by utilizing the positive range of the SUT-RNS 
encoding for some values of X and the negative range for the 
remaining values.  

Example 1 
When k=2 and h=3 (n=6), an SUT-RNS encoding can 

represent all numbers between -45 and +36. A single radix-8 
SUT digit in this case can represent all numbers between -5 
and +4. The value 7 can be encoded with two SUT digits as 

01 81817 ×−×+=+ . Since +1 and −1 can be written as 
0012 212021201 ×−×+×+×=+ and 12 20201 ×+×=−  

00 2120 ×−×+ , a possible SUT-RNS encoding of 7 can 

be
00

100110
 in both moduli 26-1 and 26+1 cases. 

Furthermore, it holds that |37|65 = |-28|65 and |37|63 = |-26|63. 
Hence, the value 37 can be encoded in SUT-RNS as 

01 848328 ×−×−=−  in modulo 26+1 and can be encoded as 
01 828326 ×−×−=− in modulo 26-1 arithmetic. Since values 

−3, −4 and −2 can be written as 
0012 212020213 ×+×+×+×−=− ,

12 20214 ×+×−=−  
00 2121 ×−×+ , and 0012 212121212 ×−×+×+×−=− , two 

possible SUT-RNS encodings of 37 in modulo 26+1 and 26-1 

can be 
01

001000
 and 

01
011000

 respectively. � 

III. RESIDUE-TO-BINARY CONVERTERS 
Before introducing the reverse converters for the two 

moduli sets, we present some properties that are useful in their 
design.  

176666



Let
 0

021

)1(

)1(21

x
xxX

x
xxX

X hh

hk

hkkhkh

′′= −−

−

−−− �
�

�

 
denote a 

k digit radix-2h SUT-RNS encoded number (see Fig. 1). X is 
composed of posibits, negabits and unibits. Let also 

01 yyY n �−=  and 01 zzZ n �−=  denote two n-bit vectors, 
where 11 −− = ihih Xy , ki ≤<0 , jihjih xy −− = , ki ≤<0 , 

hj ≤≤2 , and ihih xz ′=+1 , ki <≤0 , while all the remaining 
bits of Z are equal to 0. In other words, Y contains the logical 
values of the main part of X, while Z contains the logical 
values of the transfer part (unibits) of X shifted one position to 
the left. 

Property I: Considering the arithmetic values of X, Y and Z, it 
holds that: MINXZYX ++=  

Proof: Since −1 = 0−1 and 0 = 1−1, every negabit can be 
treated as a posibit with the same logical value as long as we 
decrease its value by one. Similarly, since −1=2×0−1 and 
+1=2×1−1, every unibit can be treated as a doublebit (posibit 
with double weight) as long as a correction equal to −1 is also 
taken into account. Hence:  

MIN
h

k

i

k

i

hiih

XZYRZY

ZYX

++=⋅+−+=

−−+=

−
= =

−−� �
)12(

22

1
1 1

)1(1

 
�

Property I indicates that we can split an SUT-RNS encoded 
number in two binary vectors as long as we include a 
correction term. Furthermore, it shows that if we add those 
two vectors, Y and Z, with the constant XMIN, then we can get 
the value of X in binary. 

 
Consider that m denotes an integer greater than or equal to 

zero. 

Property II: It holds that: 

1212121212
2222

−−−−−
⋅+⋅+⋅=⋅

nnnnn MIN
mmmm XZYX  

Proof: The proof is straightforward and is therefore omitted. � 

Property II implies that the multiplication of an SUT-RNS 
encoded number X by 2m taken modulo 2n-1 can be performed 
by: (a) rotating the bits of the two vectors Y and Z m positions 
to the left and (b) considering a correction term. 

Let Y and Z denote the vectors that result from Y and Z by 
inverting the logical values of all their bits except the 0s of Z. 

Property III: Considering the arithmetic values of X, Y  and 
Z , it holds that:  MAXXZYX −+=−  
Proof: Consider a posibit p∈{0, +1}, a negabit n∈{−1, 0} and 
a unibit u∈{−1, +1}. If we denote as p , n , and u the 
complements of the logical values of p, n, and u, respectively, 
it then holds that 1−=− pp , nn =− , and 12 −=− uu . Hence 

X−  is equal to the sum of Y  and Z  as long as we consider a 
correction of −1 for every posibit and unibit. The total 
correction that is then required is equal to: 

MAX
h

k

i
h

kh
hih

khhkhkhkh

XR −=⋅−=
−
−−=−=

=−−−−−−−−−−−

−

=

−−

−+−−−−

� 1

1

11

21)1()1()1(2100

2
12
1222

22222222 ���

 
 
 
�

Property III introduces a way to negate an SUT-RNS 
encoded number.  

Property IV: It holds that: 

1212121212
2222

−−−−−
⋅−⋅+⋅=⋅−

nnnnn MAX
mmmm XZYX  

Proof:The proof is straightforward and is therefore omitted.  � 

Property IV implies that the computation of 
12

2
−

⋅− nSUT
m X  

can be performed by: (a) rotating the bits of Y  and Z m 
positions to the left, and (b) considering a correction term. 

Example 2 
Let X denote a 2-digit radix-24 SUT-RNS-encoded number 

(n=k×h=2×4=8) which has a value equal to 

.26166162
00

00111011 01 =×−×==X  According to 

Property I we can compute the value of X if we add 
Y=10110011=179, Z=0, and the correction XMIN = 
−(23+1)(28+1)/(24−1)=−9×17, that is, X=179+0−153=26. 
According to Property II, 

12
2

8
2

−
⋅ X can be computed by 

rotating each bit of Y and Z two positions to the left 
(11001110=206 and 00000000=0) and adding them along with 
a correction equal to 1794 ××− . Hence, 

10417942062 25512
2

8
=××−=⋅

−
X . According to Property 

III, in order to compute –X, we derive Y =01001100=76 and 
Z =00100010=34, add them and decrease the resulting binary 
value by a constant equal to XMAX=23×17=136. Hence –X = 
110–136 = –26. Finally, according to Property IV, 

12
2

8
2

−
⋅− X can be computed by rotating every bit of Y  and 

Z two positions to the left (00110001=49 and 10001000=136) 
and decreasing their sum by the constant correction 4×23×17. 
Hence, 15110417241852

255255

3

12

2
8 =−=××−=⋅−

−
X . � 

In the following, we utilize the CRT and the New CRT-I 
theorem in order to derive reverse converters for the SUT-
RNS encoding for two different moduli sets, that is, the 3-
moduli set {2n-1, 2n, 2n+1} which has a dynamic range 
approximately equal to 3n bits and the 4-moduli set {2n-1, 2n, 
2n+1, 22n+1} which has a dynamic range approximately equal 
to 5n bits, respectively. Efficient reverse converters for them 
for both the binary and the BSD encodings can be found in 
[18], [20] and [11]. Hence, a comparison against the proposed 
converters for the SUT-RNS encoding is feasible and will be 
given in the next section. 

A. Reverse Converter for the {2n-1, 2n, 2n+1} RNS 
Consider an RNS with the three-moduli set {2n-1, 2n, 2n+1} 

and a 3n-bit number X∈[0, 23n-2n). X can be uniquely 
represented in RNS by {x1, x2, x3}, where 121 −= nXx , 
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nXx 22 = , 123 += nXx . Utilizing the CRT, X can be 
computed from {x1, x2, x3} as [17] [18]: 

123212 22 −+++= nTTTxX n
, where 

121
121

1 2
)22(

−
−− +=

n
xT nn , 

1222 2
2

−
−=

n
xT n , 

123
121

3 2
)22(

−
−− −=

n
xT nn . 

Hence, X can be reconstructed by concatenating the n bits of 
x2 with the 2n bits derived by the sum of the Ti terms taken 
modulo 22n-1. 

Assume that x1, x2, x3 are SUT-RNS encoded according to 
Fig. 1. x1, x2, x3 consist of posibits, negabits and unibits. Then, 
the n bits of the binary encoding of x2 can be derived 
according to Property I. The derivation of each Ti term along 
with its corresponding correction is based on Properties I-IV. 
For example, when n=k×h=2×4=8, the binary vectors along 
with the correction term of each Ti term are shown in Fig. 2. 
Specifically, the correction for the term T1 is derived by 
applying Property II, that is 
 

12
1121

12
121

22
)12)(22()22(

−
−−−

−
−− ++−=+

nn
RX hnn

MIN
nn . 

Property IV is applied in order to derive the correction for 
term T2, that is 

12
1

12 22
222

−
−

−
−=−

nn
RX hn

MAX
n . 

Accordingly, by employing again Properties II and IV, we 
derive the correction for term T3. The closed forms that are 
given for the correction terms hold for every combination of n, 
k and h. We can unify all required corrections for the Ti terms 
into a single 2n-bit correction term equal to: 

12
1112

3 22)12()22(
−

−+− +−+−= nRRC hnnn  

The last row of Fig. 2 presents the binary value of the C3 
correction term when n=k×h=2×4=8. A Dadda adder tree 
composed of full and half adders can be used to compress the 
bits of the terms T1, T2, T3 and C3 of Fig. 2 in two 2n-bit 
vectors that can then be driven to a parallel modulo 22n-1 
adder in order to derive the 2n most significant bits of X. The 
constant bits of the C3 term can be utilized for simplifying the 
implementation of the converter circuit. 

B. Reverse Converter for the {2n-1, 2n, 2n+1, 22n+1} RNS 
Consider an RNS with the four-moduli set {2n-1, 2n, 2n+1, 

22n+1} and a 5n-bit number X∈[0, 25n-2n). X can be uniquely 
represented in RNS by {x1, x2, x3, x4}, where 

121 −
= nXx , 

nXx 22 = , 123 += nXx , 124 2 += nXx . According to the New 
CRT-I theorem, X can be computed from {x1, x2, x3, x4} as 
[11] [20]:  

1243212 42 −++++= nTTTTxX n , where  

121
22

1 4)12)(12(2
−

− ++= nxT nnn ,  
122

3
2 42

−
−= nxT n ,    

123
2222

3 4)22)(12(
−

−− −+= nxT nnn  and  

124
113

4 4)22(
−

−− −= nxT nn  .  

Hence, X can be reconstructed by concatenating the n bits of 
x2 with the 4n bits derived by the sum of the Ti terms taken 
modulo 24n-1. 

Assume that x1, x2, x3, x4 are SUT-RNS encoded. Obviously, 
x4 has twice SUT digits compared to the other three residues. 
The n bits of the binary encoding of x2 can be derived 
according to Property I. The derivation of each Ti term can be 
based on Properties I-IV similarly to the previous moduli set 
case. For example, when n=k×h=2×3=6, the binary vectors 
along with the correction term of each Ti term are shown in 
Fig. 3. The closed forms that are given for the correction terms 
also hold for every combination of n, k and h. We can unify all 
required corrections for the Ti terms into a single 4n-bit 
correction term equal to:

 

12
13

11131221324

111213314
4

42

2)22()2222(

2)22222(

−
∗−

∗−−−−−−−

−−−−−

−

+−+++−

++++−=

nR

RR

RC

n

hnnnnnn

hnnnnn

 

where 
12
12* 2

−
−= h

kh
R . The last row of Fig. 3 presents the 

binary value of the C4 correction term when n=k×h=2×3=6. A 
Dadda adder tree can be used to compress the bits of the terms 
T1-T4 and C4 of Fig. 3 in two 4n-bit vectors. Then, a parallel 
modulo 24n-1 adder can derive the 4n most significant bits of 
X. The constant bits of the C4 term can be utilized for 
simplifying the implementation of the converter circuit. 

C. Sign Detection 
An SUT-RNS encoded number can have a positive or a 

negative value (see Example 1). The CRT and the New CRT-I 
are valid for either positive or negative values of the xis. 
However, an issue arises with the modulo 2n channel. 

 
TERM  BINARY VECTOR  CORRECTION 

 215 214 213 212 211 210 29 28 27 26 25 24 23 22 21 20  

T1  
0,1x  7,1X  6,1x  5,1x  4,1x 3,1X  2,1x  1,1x  0,1x 7,1X 6,1x 5,1x 4,1x 3,1X 2,1x 1,1x  

12

1121
2)12)(22(

−

−−− ++− nRhnn  
     4,1x′     0,1x′     4,1x′    0,1x′  

T2  
7,2X  6,2x  5,2x  4,2x  3,2X 2,2x  1,2x  0,2x          

12

1
222

−

−− nRhn  
    4,2x′     0,2x′            

T3  
0,3x  7,3X  6,3x  5,3x  4,3x 3,3X  2,3x  1,3x  0,3x 7,3X 6,3x 5,3x 4,3x 3,3X 2,3x 1,3x  

12

11211
222)12(2

−

−−−− −+− nRR hnhn  
     4,3x′     0,3x′    4,3x′    0,3x′  

C3  0 1 0 1 1 1 1 0 0 1 1 0 1 1 1 0  12

1112
22)12()22(

−

−+− +−+− nRR hnnn

 Figure 2. Binary vectors and correction terms for the {2n-1, 2n, 2n +1} reverse converter when n=8 (k=2, h=4)
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TERM BINARY VECTOR  CORRECTION 

  223 222 221 220 219 218 217 216 215 214 213 212 211 210 29 28 27 26 25 24 23 22 21 20   

T1 
 1,1x  0,1x  5,1X  4,1x  3,1x  2,1X  1,1x  0,1x  5,1X 4,1x 3,1x  2,1X 1,1x 0,1x 5,1X 4,1x 3,1x 2,1X 1,1x 0,1x 5,1X 4,1x 3,1x  2,1X   

12
1

223

4)12)(12(

)22(

−
−

−−

++−

+−

nR
R

hn

nn  

 0,1x′    3,1x′    0,1x′    3,1x′   0,1x′   3,1x′   0,1x′   3,1x′    

T2 
 5,2X 4,2x  3,2x  

2,2X 1,2x  
0,2x                     

12

13
422

−

−− nRhn  
  3,2x′    0,2x′                      

T3 
 1,3x  

0,3x  5,3X 4,3x  3,3x  2,3X 1,3x  0,3x  
5,3X 4,3x  3,3x  2,3X 1,3x 0,3x 5,3X 4,3x 3,3x 2,3X 1,3x 0,3x 5,3X 4,3x  3,3x  2,3X  

12
122

1222

4)12)(12(2

2)12(2

−
−−

−−

++−

+−

nR
R

hnn

hnn
 

 0,3x′    3,3x′    0,3x′   3,3x′    0,3x′   3,3x′   0,3x′   3,3x′     

T4 
 6,4x  5,4X 4,4x  3,4x  2,4X  1,4x  0,4x  

11,4X  10,4x  9,4x  
8,4X 7,4x 6,4x 5,4X 4,4x 3,4x 2,4X 1,4x 0,4x 11,4X 10,4x 9,4x 8,4X 7,4x   

12
*11

113

422

)12(2

−
−−

∗−−

−

+−

nR
R

hn

hn  
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 Figure 3.  Binary vectors and correction terms for the {2n-1, 2n, 2n+1, 22n+1} reverse converter when n=6 (k=2, h=3). 

 
Let us first consider the 3-moduli set {2n-1, 2n, 2n+1}. 

According to the CRT theorem, 123212 22 −+++= nTTTxX n . 
Assume that x2 is SUT-RNS encoded in the negative value 

range. Then, its corresponding positive value is equal to 2n+x2 
and 

122122122 222 12)2(2
−−− −−=+−=

nnn xxT nnn . Although 

the CRT theorem is still valid, in hardware, an adder is 
required in order to propagate the carry from the n least 
significant bits to the 2n most significant positions resulting in 
a significant overhead in the converter. To avoid this, we can 
simply detect the sign of x2 and decrease the value of C3 by 
one when x2 is less than 0, while deriving the n least 
significant bits of the output of the reverse converter utilizing 
Property I.  

The same holds for the 4-moduli set {2n-1, 2n, 2n+1, 22n+1}. 
According to the New CRT-I theorem, 

1243212 42 −++++= nTTTTxX n . Assume that x2 is SUT-
RNS encoded in the negative value range. Then, its 
corresponding positive value is equal to 2n+x2 and 

122
3

122
3

122 444 12)2(2
−−− −−=+−=

nnn xxT nnn .Hence, 

similarly to the 3-moduli set case, we can simply detect the 
sign of x2 and decrease the value of C4 by one when x2 is less 
than 0, while deriving the n least significant bits of the output 
of the reverse converter utilizing Property I. 

Consider an SUT-RNS encoded number X with k SUT 
digits (Dk-1…D0) as the one given in Fig. 1. The sign of X can 
be determined by the sign of the first non-zero digit with the 
maximum weight. Zero is represented in an SUT digit as 

1
1101�

 or 
0

0110�
. If we denote as

 �
�
�

=
≠

=
01
00

i

i
i D

D
ZD  

the zero indication of the i-th SUT digit, ki <≤0 , then its 
value is given by the logic equation: 
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where ∨ and ∧ denote logical OR and AND, and can be 
realized with two (h+1)-input AND gates and one two-input 
OR gate. 

All SUT digits with negabits equal to logic 0 represent non-
positive numbers. Furthermore, when a negabit has a logic 
value equal to 1 then it represents a non-negative number. The 

only exception is the SUT digit
 

0
0010�

 which, although 

has a negabit with a logic value equal to 1, represents a 

negative number (–1). If we denote as 
�
�
�

<
>

=
01
00

i

i
i D

D
SD  the 

sign indication of the i-th SUT digit, ki <≤0 , then its value 
is given by the logic equation �∧= −+ 2)1(( hii xSD  

1)1(1 ) −++ ∨′∧∧ hiihih Xxx  and can be realized with a (h-1)-input 
AND gate and a two-input OR  gate. Hence, the sign of the 

SUT-RNS encoded number X, 
�
�
�

<
≥

=
01
00

X
X

S X , is given by 

the logic equation: 

)(

()(

0011

22111

SDZDZDZD

SDZDZDSDZDS

k

kkkkkX

∧∧∧∧∨

∨∧∧∨∧=

−

−−−−−

�

�
 

The corresponding circuit is graphically presented in Fig. 4. 

Once the sign of x2, 2xS , is derived, it can be utilized to 
decrease the value of C3 or C4 by one when x2<0. Since, for 
every bit S it holds that 1−=− SS , an efficient way to deal 
with 

2xS is to decrease the value of C3 or C4 by one and add 

2xS in the least significant bit position in the Dadda adder tree. 
Fig. 5 presents the complete architectures of the proposed 
reverse converters for the two moduli sets. 

It should be noted that the computation of 
2xS  is not 

expected to delay the addition of the required bits in the Dadda 
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Figure 4. Block diagram of the sign detection circuit for X. 

 
 (a) (b) 
Figure 5. The proposed converter architectures for the (a) {2n-1, 2n, 2n+1} 
moduli set and (b) {2n-1, 2n, 2n+1, 22n+1} moduli set. 

adder tree of the reverse converters. This is due to the 
following: (a) x2 corresponds to the modulo 2n channel and 
this channel is usually faster than the rest channels of the 2n-1, 
2n+1, 22n+1 forms. It is therefore expected that the delay of the 
sign detection of x2 will be hidden within the increased delay 
of the other channels. (b) The 

2xS  bit can be always driven to 
the last level of the adder tree and therefore part of the delay 
for its derivation can be hidden within the delay of the full 
adders and half adders of the preceding levels of the adder 
tree. 

IV. EVALUATION AND COMPARISONS 
In this section we evaluate the proposed residue-to-binary 

converters for the SUT-RNS encoding and compare them 
against the corresponding converters that use the BSD 
encoding at their inputs, while comparison with the binary 
encoded converters is also given for completeness. For the two 
latter cases we assume the architectures proposed in [11], [18] 
and [20] which are considered the current state-of-the-art. 

While the binary encoded and the proposed SUT-RNS 
encoded reverse converters make use of conventional 
arithmetic units, such as full adders and half adders, this is not 
the case for the BSD encoded ones that utilize dedicated 
building cells. Thus, comparisons based on the number of full 

adders, half adders and carry-propagate adders used cannot be 
given. An area-delay comparison of the various converters can 
be based on the unit gate model [23]. The unit gate model 
assumes that each monotonic gate counts as one gate 
equivalent for both area and delay, while two-input XOR and 
XNOR gates count for two gate equivalents for both area and 
delay.  

Table II presents the total area and delay estimations of the 
proposed converters for the 3-moduli set {2n-1, 2n, 2n+1} 
according to the unit-gate model. We assume that h is greater 
than 2. The n least significant bits of the output can be derived 
according to Property I by a two-operand binary parallel-
prefix adder along with k inverters while the 2n most 
significant bits of the output can be derived by a Dadda adder 
tree, a modulo 22n-1 parallel-prefix adder with single zero 
representation at the output and the sign detection circuit for 
x2. The delay of the Dadda adder tree is equal to the delay of 
two full adders and one half adder (or a simplified full adder 
with one of its inputs connected to logic 1) since the maximum 
number of bits with the same weight that have to be added 
(see for example Fig. 2) is equal to 6 while one of them has a 
constant value. Considering the delay, we provide in Table II 
both an optimistic estimate that does not consider the delay of 
the x2 sign detection, assuming that the x2 input is available 
earlier than the other inputs, as well as a pessimistic one that 
assumes that all inputs are available at the same time. Table II 
also presents the total area and delay estimates of the binary 
and BSD-encoded reverse converters for the 3-moduli set {2n-
1, 2n, 2n+1} assuming the architectures presented in [18] and 
[11] respectively. In all converters, the modulo 2n parallel-
prefix adders assume a Kogge-Stone architecture whereas all 
modulo 22n-1 parallel-prefix adders assume the architecture of 
[24] along with 2n NOR gates at the output for providing a 
single zero representation. 

Similarly to the 3-moduli set case, Table III presents the 
total area and delay estimations of the proposed converters for 
the 4-moduli set {2n-1, 2n, 2n+1, 22n+1} according to the unit-
gate model. We again assume that h is greater than 2. The n 
least significant bits of the output can be derived as in the 
previous case while the 4n most significant bits of the output 
can be derived by a Dadda adder tree, a modulo 24n-1 parallel-
prefix adder  with single zero representation  at the output  and  

TABLE II.  UNIT-GATE AREA AND DELAY CLOSED FORMS FOR THE {2N-1, 2N, 
2N+1} REVERSE CONVERTER 

Converter Delay (eq. gates) Area (eq. gates) 

Proposed
MIN: 2logn + 16 

MAX: 2logn + 10 +  
max{log[2k(k+1)(h+1)], 6} 

9nlogn + 33n  
+ k/2(k+73) +14 

[18] 2logn + 11 6nlogn + 31n 
[11] 2logn + 22 15nlogn + 113n + 24 

TABLE III.  UNIT-GATE AREA AND DELAY CLOSED FORMS FOR THE  
{2N-1, 2N, 2N+1, 22N+1} REVERSE CONVERTER 

Converter Delay (eq. gates) Area (eq. gates) 

Proposed 
MIN: 2logn + 22 

MAX: 2logn + 12+  
 max{log[2k(k+1)(h+1)], 10} 

15nlogn + 95n  
+ k/2(k+185) +14 

[20] 2logn + 20 12nlogn + 111n + 39 
[11] 2logn + 24 27nlogn + 333n + 24 
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the sign detection circuit for x2. The delay of the Dadda adder 
tree is equal to the delay of three full adders and one half 
adder (or a simplified full adder) since, in this moduli set case, 
the maximum number of bits with the same weight that have 
to be added (see for example Fig. 3) is equal to 7 with one of 
them being constant. We again provide in Table III both an 
optimistic and a pessimistic estimate regarding the delay. 
Table III also presents the total area and delay estimates of the 
binary and  BSD-encoded  reverse converters for the 4-moduli 
set {2n-1, 2n, 2n+1, 22n+1} assuming the architectures 
presented in [20] and [11] respectively. We make the same 
assumptions as before for the modulo 2n parallel-prefix adders 
and the modulo 24n-1 parallel-prefix adders. 

Fig. 6 (Fig. 7) graphically compares the unit-gate area and 
delay of the three 3-moduli set (4-moduli set) reverse 
converters for values of n up to 64 covering dynamic ranges 
up to 320 bits. We consider four different values of h. We 
observe that the delay of the proposed converters lies between 
those of the reverse converters for the binary and the BSD 
encoding while the area of the proposed converters is close to 
the area required by the converters for the binary encoding and 
is significantly smaller than that required by the converters for 
the BSD encoding, especially for large values of n. 
Furthermore, for a given value of n, increasing h reduces the 
area and the delay of the corresponding proposed converters. 
This is justified by the fact that a large value of h leads to a 
small number of SUT digits. Finally, the differences between 
the area and the delay of the proposed converters and the 
binary-encoded ones are much smaller in the 4-moduli set case 
than in the 3-moduli set case. 

The unit-gate model estimations for area and delay can only 
be considered as indicative. Furthermore, the unit-gate model 
does not consider power dissipation. To attain realistic results, 
reverse converters for three values of n were described in 
HDL. For the SUT-RNS case we assumed a value of h equal 
to four. The delay of the sign detection circuit for x2 was taken 
into account in all cases. After simulating the resulting 
descriptions, the converters were synthesized and mapped to a 
90 nm power-characterized CMOS implementation 
technology [25]. The Synopsys Design Compiler tool in the 
topographical mode was used for the synthesis and mapping of 
the converters. In this mode, for achieving faster timing 
closure, the tool performs floorplanning in parallel with 
synthesis and mapping and the design is annotated with wiring 
lengths and fan-out and parasitic capacitances coming directly 
from the floorplan of the design and not from a wire load 
model. We assumed that each converter’s input and output is 
driven by the output of a D flip flop and drives the input of a 
D flip flop of the same implementation library, respectively. A 
typical corner (1.2V, 25oC) was considered. Each converter 
was recursively optimized for speed using a bottom-up 
approach. A final area recovery step was then applied. For 
obtaining power data, we assumed an operating 400MHz 
frequency at each design and equiprobable inputs and 
measured the average power dissipation. Table IV presents the 
attained area, delay and power dissipation results. The results 
validate the conclusions that were previously reported 
regarding the area and the delay of the various converters. 
Furthermore, the results indicate that the average power 
dissipation of the proposed reverse converters is also 
significantly smaller than that of the converters for the BSD 
encoding.  
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Figure 6. Unit-gate (a) delay and (b) area estimations for the 3-moduli set reverse converter. 
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Figure 7.  Unit-gate (a) delay and (b) area estimations for the 4-moduli set reverse converter. 
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TABLE IV.  CMOS VLSI AREA, DELAY AND AVERAGE POWER DISSIPATION 
RESULTS 

    Binary-RNS  BSD-RNS  SUT-RNS 

n k h 
 Delay 

(ns) 
Area 
(�m2) 

Power 
(mW) 

 Delay 
(ns) 

Area 
(�m2) 

Power 
(mW) 

 Delay 
(ns) 

Area 
(�m2)

Power 
(mW)

{2n-1, 2n, 2n+1} reverse converters 
8 2 4  1.00 6365 1.65  1.78 19771 8.40  1.27 8810 2.52 

16 4 4  1.15 14919 3.87  1.95 44123 18.75  1.42 20749 6.14 
32 8 4  1.33 34231 8.88  2.05 99216 41.44  1.57 48123 14.34
{2n-1, 2n, 2n+1, 22n+1} reverse converters 
8 2 4  1.49 17385 6.57  1.95 50641 23.21  1.60 19538 7.51 

16 4 4  1.63 39159 14.84  2.09 110974 51.30  1.74 44145 16.99
32 8 4  1.82 87289 33.84  2.31 240411 113.60  1.89 99570 34.35

 

V. CONCLUSIONS 
Redundant encodings can be used to reduce the carry 

propagation and the delay inside each channel of an RNS. 
SUT has been proposed as a redundant high-radix encoding 
for RNS that can significantly improve the area and routing 
costs compared to the BSD-encoded RNS with only a small 
increase in delay. In this paper, we have introduced residue-to-
binary converters for the SUT-RNS encoding for two 
representative moduli sets, that is, for the {2n-1, 2n, 2n+1} and 
the {2n-1, 2n, 2n+1, 22n+1} sets. The evaluation of the 
proposed converters has shown that they are more efficient, 
both in terms of area and delay, than the corresponding 
converters that utilize the BSD encoding. Hence, the SUT-
RNS encoding can be effectively utilized in RNS-based 
applications that require high dynamic ranges with strict area 
and delay constraints. The methodology that has been 
introduced for the proposed reverse converters can be easily 
applied to the design of reverse converters for other moduli 
sets as well such as those reported in [21]. 
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