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Abstract—A novel architecture suitable for designing squaring
circuits in Quantum-dot Cellular Automata (QCA) nanotech-
nology is explored in this manuscript. It consists of a reduced
partial product array followed by a Dadda adder tree and a final
carry-flow adder. A new full adder (FA) layout is also introduced
that is more area efficient than the already proposed ones. The
proposed squarers offer an execution delay of (2𝑛 − 1) clock
zones. Layouts of the proposed squarers using multilayer design
in the QCAdesigner toolset are presented and their area and
delay complexities are compared against previously proposed
multipliers.

I. INTRODUCTION

The computation of the square of a binary number can be
implemented in hardware by a multiplier having the same
value on its two inputs. However, a large number of appli-
cations require a very large number of squaring operations
and therefore profit from the use of a dedicated squaring
circuit, capable of performing hundreds of millions of squaring
operations per second. Such applications include Euclidean
distance and vector normalization [1]–[3], image compression
and pattern recognition [4]–[6], Viterbi decoding, graphic
processors [7], polynomial and function evaluation [8]–[10],
digital synthesizers [11] and so on. It is therefore no surprise
that a significant number of architectures have been presented
for the design of efficient dedicated squaring circuits in CMOS
technology [3], [12]–[15].

It is expected that the role of CMOS as the dominant
VLSI technology will face serious problems in the near
future due to limitations such as short channel effects, doping
fluctuations and increasingly difficult and expensive lithog-
raphy at nano scale. The projected expectations in terms of
device density, power dissipation and performance radically
necessitate different technologies that provide innovative so-
lutions to integration and computations. To this end, various
nanoelectronic devices have been of interest to the research
community during the last decade. These include carbon
nanotubes, silicon nanowires, resonant tunneling diodes, and
others. One of the devices suggested in the literature as an
alternative to the traditional CMOS-based technology is the
quantum-dot cellular automata (QCA) which is considered to
provide new possibilities for computing owing to its unique
properties [16], such as that the device used for logic is
also used for interconnect. QCA relies on the Coulombic
interaction of electrons and its logic states are not stored
as voltage levels, but rather as the position of individual
electrons. Even though the physical implementation of devices

is still being developed, it is necessary to research about
efficient QCA circuit architectures. Although the architectures
already proposed for CMOS may be translated into QCA
implementations by mapping CMOS gates into QCA basic
logic gates (the majority, the minority and the inverter are
the basic logic elements efficiently implemented in QCA)
this does not mean that algorithms that have been optimally
implemented in one technology are necessarily the best choice
in the new one. To this end, a lot of recent research has focused
in efficient circuit design and arithmetic components design
in QCA. Examples include parallel adders [17]–[20], serial-
parallel and parallel multipliers [21]–[24].

In this paper, we consider the problem of designing fast
and area efficient squarers in QCA which has not received
any research efforts yet. We propose an architecture based on
reducing the partial products array, an adder tree that reduces
the partial products in two final summands and a final parallel
adder that produces the result. We present experimental results
for our squarers based on drawn layouts and compare them
against previously proposed parallel multipliers.

The rest of this paper is organized as follows. Section II is
a brief overview of QCA and provides the basic notations
pertaining to it. The proposed squarers are introduced in
Section III. Delay and area results from drawn layouts are
given in Section IV. Conclusions are drawn in the last section.

II. QCA OVERVIEW

A QCA is a square structure of electron wells confining
two free electrons. Each cell has four quantum dots which
can hold a single electron per dot. Two different positions of
the dots are possible; they can be positioned near each vertex
of the cell, or close to the medium point of each side, to form,
respectively, cross cells and plus cells. Each of the two excess
electrons within each cell can be in any one of the four dots,
but due to electric repulsion they can not occupy the same
dot and must reside in maximally distant, that is opposed,
dots. Therefore, only two polarizations are possible for each
case of cells, enabling us to encode a binary value at each.
Figs 1(a) and 1(b) show the possible polarizations and the
binary encodings commonly adopted for cross and plus cells,
respectively. In this paper we assume a nominal cell size of
20 nm by 20 nm. The cell has a width and height of 18 nm
and 5-nm-diameter quantum-dots. The cells are placed on a
grid with a cell center-to-center distance of 20 nm.
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Fig. 1. QCA cells : polarizations and encodings.

 

Fig. 2. Wires in QCA.

By carefully choosing the interdot tunneling barrier of the
QCA cell, adiabatic switching is accomplished. For switching,
the cells are grouped together into pipeline zones and a four
phase clocking scheme is used in QCA. In this way, the circuit
area is divided into four sections driven by a distinct phase of
the clock. In each zone, the clock signal has four states: high-
to-low, low, low-to-high, and high. The cell begins computing
during the low-to-high state and holds the value during the
high state. The cell is released when the clock is in the high-to-
low state and inactive during the low state. During each clock
cycle, half of the cells are active for signal propagation, while
the other half is unpolarized. During the next clock cycle,
half of the previous active clock zone is deactivated and the
remaining active zone cells trigger the newly activated cells
to be polarized. Thus, signals propagate from one clock zone
to the next. This clocking scheme allows each zone of cells
successively to perform its calculation and then to hold its
state by raising the interdot barriers and leads to inherent self
latching in QCA.

The basic elements in QCA are the wire, the inverter and
the majority / minority gates. A wire is formed by cascading
cells horizontally or vertically. Due to Coulombic interactions
between adjacent cells a binary value or its complement may
propagate from one end (input) of the wire to the other
(output). A straight line of cross cells can be used to propagate
a binary value (Fig. 2(a)) whereas a line of plus cells is an
inverter chain (Fig. 2(b)). Furthermore QCA cells do not
have to be in a completely straight line for binary signal
propagation. Off center cells can be used. The off center cells
in Fig. 2(c) perform a double inversion. Fig. 3 presents the two
most popular ways to construct an inverter in QCA. Because

 

Fig. 3. Inverters in QCA.

 

Fig. 4. Structure of a majority (a) and a minority (b) gate.

there are propagation delays between cell-to-cell reactions,
there should be a limit on the maximum cell count in a
clock zone. This ensures proper propagation and reliable signal
transmission. In this paper, a maximum length of 30 cells is
considered. The minimum separation between two different
signal wires is the width of two cells.

In CMOS technology two different metal layers must be
used for routing of two signals when the wires that propagate
them cross. A similar approach can be used in QCA, called
multilayer crossover. It utilizes several cell layers and uses
intermediate layers of vertical cells that interconnect them.
Another wire crossing unique to QCA technology, called
coplanar wire crossing is also available. Coplanar crossovers
can be realized by using the two types of cells (cross and plus)
to propagate two signals on the same layer in QCA. In this
paper, we use both routing strategies.

Apart from wires and inverters, three-input majority / minor-
ity gates serve as the fundamental gates. The structure of the
majority and minority gates is similar with the only exceptions
being that cross cells are used for the former and plus cells
for the latter and that the minority gate requires one cell less.
Figs 4(a) and 4(b) show the logic symbols and the layouts of
the three-input majority and minority gates, respectively. AND
and OR gates can easily be derived by fixing one of the inputs
of these gates to zero or one.

Based on the inverters and the majority or minority gates
introduced earlier, one can design larger circuits. Circuit
diagrams for a full adder (FA) using inverters and majority
or minority gates are given in Figs 5(a) and 5(b) respectively.
Two layouts with cross cells for the QCA implementation of
the first diagram are also presented in Fig. 5(a). The left one
has been proposed by [22] while the one on the right presents
a more area efficient solution which we propose and use in
this paper. The layout of Fig. 5(b) [19], uses plus cells and is
also slightly more area efficient than that of [22]. It is noted
that all FA cells require a single clock zone to produce their
carry output, while two clock zones are required for their sum
output and the same holds for the corresponding half adders
(HA).

Several architectures already proposed for CMOS parallel
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Fig. 5. FA cells in QCA.

adders have also been investigated for implementation in
QCA including the ripple carry, carry lookahead, conditional
sum, parallel-prefix and hybrid [18], [19], [22], [25], [26]
architectures. Due to the available building blocks in QCA,
the ripple carry architecture (also known as the carry-flow
architecture) offers, apart from small area, the least delay
(equal to 𝑛 + 2 clock zones for an 𝑛-bit parallel adder), for
operand sizes less than 16 bits and is also the clear choice
among the available adder architectures when the operand bits
are not all derived at the same time, such as in the case of the
parallel adder used in multipliers and squarers.

Several architectures have also been proposed for designing
a multiplier in QCA; some for the serial-parallel multipli-
ers [22], [27] case while others for parallel multipliers [21],
[23], [24]. To the best of our knowledge, no architecture has
been explored for the design of a squarer in QCA. We fill this
gap by proposing a novel architecture in the next Section.

III. PROPOSED SQUARERS

Let 𝐴 = 𝑎𝑛−1𝑎𝑛−2 . . . 𝑎1𝑎0 denote an 𝑛-bit operand. For
the clarity of our presentation in the examples below we
consider that 𝑛 = 8. A squarer circuit that produces 𝐴2 can
be thought as one consisting of three stages :

∙ the generation stage, which produces the partial product
bits,

∙ the reduction stage, which reduces the partial products in
two final addends and

∙ the final addition stage in which the sum of the two
addends is computed.

A. Generation stage

The purpose of the generation stage is twofold; to produce
as less partial product bits as possible and to minimize the
maximum height of each column of partial product bits.
Less partial product bits means small implementation area
but is even more important in QCA than in CMOS due to
the limitations of the maximum length of cells a wire can
have before a clock zone change is required. Minimizing the
maximum height of the columns also minimizes the stages of
the adder tree required for their reduction.

Two approaches can be followed to minimize the number
of partial product bits; to use Booth encoding at the input
operand and to fold the partial product bits using mathe-
matical identities. Since Booth encoding does not lead to
faster designs [28] we only concentrate below on the second
technique. The following identities [12] can be applied to
the initial partial product array to derive a folded one whose
size is approximately half of the original : 𝑎𝑖𝑎𝑖 = 𝑎𝑖 and
𝑎𝑖𝑎𝑗 + 𝑎𝑗𝑎𝑖 = 2𝑎𝑖𝑎𝑗 . The second identity means that we can
move pairs of 𝑎𝑖𝑎𝑗 and 𝑎𝑗𝑎𝑖 partial product bits to the next to
the left column. Regions marked A and B in the example
case in Fig. 6 indicate the initial and the folded product
array derived by the application of the above identities. In the
general case, after the above identities have been exploited,
the square of 𝐴 takes the form :

𝐴2 =

𝑛−1∑

𝑖=0

𝑛−1∑

𝑗=0

𝑎𝑖𝑎𝑗2
𝑖+𝑗 =

⌊𝑛−1
2 ⌋∑

𝑖=0

𝑛−1∑

𝑗=𝑖+1

𝑎𝑖𝑎𝑗2
𝑖+𝑗+1+

𝑛−1∑

𝑖=0

𝑎𝑖2
2𝑖

Further reductions in the partial products array are possible by
using identities of precalculated sums such as those proposed
in [3], [13], [15]. However, most of these identities are very
costly to implement in QCA and therefore we only consider
the half-adder relation : 𝑎𝑖 + 𝑎𝑖𝑎𝑖−1 = 2𝑎𝑖𝑎𝑖−1 + 𝑎𝑖𝑎𝑖−1.
Using this relation we can substitute a pair of 𝑎𝑖 and 𝑎𝑖𝑎𝑖−1

bits residing in the column with weight 22𝑖 with the 𝑎𝑖𝑎𝑖−1 bit
in the same column and the 𝑎𝑖𝑎𝑖−1 bit in the next to the left
column, that is, the one with weight 22𝑖+1. When 𝑛 is even,
the maximum depth of the array occurs at the column with
weight 2𝑛+1 and the above substitution reduces the depth by
one. We propose that the half-adder relation is applied only
to pairs of bits residing in the columns with weight 22 up to
2𝑛+1 (in the example case in the shaded area of region B in
Fig. 6) for three reasons :

∙ each application increases the number of distinct partial
products that should be generated. For example, both
𝑎1𝑎0 and 𝑎1𝑎0 need to be generated compared to just
𝑎1𝑎0 before the application of the relation. Since we limit
the length of each wire to a maximum of 30 cells before a
new clock zone is used, for forming more partial products



 
Fig. 6. Derivation of the 8x8 squarer.

more clock zones would be required resulting in partial
products produced with delay.

∙ the application to the column with weight 22𝑛−1 would
increase the size of the final adder by one.

∙ the application to the columns with weight more than
2𝑛+1 will not reduce the depth of the array.

Region C in Fig. 6 presents the final form of the partial
products in the example case.

B. Reduction stage

For reducing the partial products into two final addends an
adder array or an adder tree can be used. Since an adder tree
uses fewer stages we adopt a tree designed according to the
Dadda proposal [29] for our squarers. A Wallace [30] tree for
partial product reduction was also considered as an alternative
solution. Although Wallace’s strategy (combine partial product
bits at the earliest opportunity) leads to a slightly narrower
final adder, it also has a more complex reduction tree leading
to delayed derivation of the final addends. Dadda’s method
performs combining as late as possible, while maintaining the
same stages in the adder tree.

The two shaded lines following region C in Fig. 6 indicate
the required HA and FA in every column of each of the
two stages of the adder tree. A total of 10 FAs and 2 HAs
are required in the example case. The numbers in between
represent the number of clock zones required for deriving the
inputs of the second stage of the adder tree. For example, the

FA in the column with weight 27 in the second stage of the
tree receives three inputs that are computed after 3, 1 and 1
clock zones, so its sum output is available after 5 clock zones,
while its carry after 4 clock zones.

C. Final Addition Stage

The reduction stage provides two addends that should be
driven to a (2𝑛 − 4)-bit adder. We adopt the simple ripple-
carry (also known as carry-flow in QCA) architecture for it
in the proposed squarers which offers a delay of (2𝑛 − 2)
clock zones. Obviously, this starts adding its least significant
bit operands (those with weight 23) right after their production
and not after the completion of the reduction stage.

The last two lines of Fig. 6 indicate the clock zones in
which the bits of the final addends are available, while the
smaller lightly shaded numbers between them indicate the
clock zones required for producing each intermediate carry
of the final adder. Interestingly enough, the reduction stage
produces all addends’ bits either before or at the same clock
zone with the intermediate carries at each FA, indicating that
the reduction stage does not contribute at all to the delay of the
squarer which is only determined by the clock zones required
by the final adder and for the partial products formation. By
examining all practical squarer cases (from 𝑛 = 4 up to
𝑛 = 64) we verified that the same holds for all of them.
Then, by assuming that all partial products can be produced
within 1 clock zone we conclude that the proposed 𝑛-bit
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Fig. 7. Layouts of the proposed 4-bit squarer with cross (a) and plus (b) cells and the 8-bit squarer with cross cells.

squarer offers a theoretical delay of (2𝑛 − 1) clock zones.
However, the actual layout implementations may deviate from
this theoretical minimum, because :

∙ of the limits of the length of each wire dictating a shift to
a new clock zone. Therefore, a carefully designed layout
should first concentrate on producing the partial products
for columns with weight 23 up to 2𝑛+2 in the earliest
clock zone possible, while the production of the rest can
not delay the squarer since their columns do not have a
critical depth.

∙ in the analysis above, we assume that a FA or a HA will
always be able to combine the signals derived earlier. For
example, if a FA is used to combine 3 of the 5 signals in a
column with arrival times of 5, 4, 2, 1 and 1 clock zones,
we assume that this will combine the last three signals
for minimum delay. However, in actual layout this may
not be always possible.

IV. RESULTS & COMPARISONS

The presented results are based on layouts drawn with
QCADesigner [31] using two cell layers and a maximum of
30 cells before a shift to a new clock zone. The following
parameters are used for a bistable approximation: 128000
samples, 0.00001 convergence tolerance, 54 up to 65nm radius

 

Fig. 8. 8-bit squarer simulation waveforms

effect, 12.9 relative permittivity, 9.8𝑒−22 clock high, 3.8𝑒−23

clock low, 2 clock amplitude factor, 11.5 layer separation, 100
maximum iterations per sample.

Figs. 7(a) and 7(b) present the designed multi-layer layouts
for the proposed 4-bit squarers using plus and cross cells,
respectively. Inverters and majority or minority gates are used
for forming the required partial product bits followed by
HA and FAs that perform the required additions. Both these
designs offer a delay of 7 clock zones with the cross cells
design requiring less area for its implementation due to the use
of the newly introduced FA layout and because the number of
inversions need to be carefully considered in every connection
in the plus cells design case. Fig. 7(c) presents the drawn
layout for the proposed 8-bit squarer using cross cells while
a snapshot of vector table simulation waveforms for it is
presented in Fig. 8. A delay of 15 clock zones is offered in



TABLE I
DELAY AND AREA RESULTS

Design Delay
Area (𝜇𝑚2) Cells(Clock zones)

4× 4 Array I multiplier 14 5.18 2,956
4× 4 Array II multiplier 14 6.02 3,738
4× 4 Wallace multiplier 10 7.39 3,295
4× 4 Dadda multiplier 12 7.51 3,384
8× 8 Array I multiplier 30 22.57 13,839
8× 8 Array II multiplier 30 21.49 15,106
8× 8 Wallace multiplier 44 87.47 33,894
8× 8 Dadda multiplier 47 92.69 34,903

8× 8 QM Wallace multiplier 36 82.18 26,499
8× 8 QM Dadda multiplier 38 82.19 26,973
4-bit squarer with cross cells 7 0.53 552
4-bit squarer with plus cells 7 0.63 628

8-bit Squarer with cross cells 15 5.99 4,668
8-bit Squarer with plus cells 15 6.3 4,780

the 8-bit squarer case.
The area and the delay of the proposed squarers from the

layouts drawn in QCAdesigner are summarized in Table I. No
other squarer architecture for QCA has been reported. Table I
also includes results of previously proposed multipliers [23],
[24] in QCA for which coplanar wire crossings on a single
cell layer were only used. As expected, the results indicate
that an 𝑛-bit squarer is both a smaller and a faster circuit than
a 𝑛×𝑛 multiplier. This means that although a multiplier can be
used for computing the square of a number, such an approach
is not efficient for applications with a high rate of squaring
operations.

V. CONCLUSIONS

An architecture for designing efficient squarers in QCA
nanotechnology was described in this paper. It consists of a
reduced partial products array, an adder tree to reduce the
array of the partial products into two final summands and a
final adder for attaining the result. The proposed 𝑛-bit squarer
theoretically offers an execution delay of 2𝑛− 1 clock zones,
which has been also achieved by layout experiments performed
with QCAdesigner tool.
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