
Configurable Booth-encoded Modulo 2
n
±1

Multipliers

Evangelos Vassalos, Dimitris Bakalis

Electronics Laboratory, Department of Physics

University of Patras

Patras, Greece

vassalos@upatras.gr, bakalis@physics.upatras.gr

Haridimos T. Vergos

Department of Computer Engineering and Informatics

University of Patras

Patras, Greece

vergos@ceid.upatras.gr

Abstract—Multi-moduli architectures are very useful for

reconfigurable digital processors and fault-tolerant systems that

utilize the Residue Number System (RNS). In this paper we

propose a novel architecture for configurable modulo 2n
±1

multipliers. It uses the modified Booth encoding of the input

operand for deriving the required partial products and an adder

tree followed by a sparse parallel-prefix final adder for their

addition. Experimental results show that the proposed

multipliers offer significant savings in area and delay compared

to those previously reported in the literature.

Keywords-modulo 2n
±1 arithmetic; modulo multipliers; Booth-

encoding; configurable circuits; residue number system

I. INTRODUCTION

The Residue Number System (RNS) is commonly adopted
for speeding up computations in digital signal processing
(DSP), cryptography and telecommunication applications and
for fault-tolerant computing [1] [2]. A non-positional RNS is
defined by a set of L moduli, suppose {m1, …, mL} that are
pair-wise relatively prime. Let |A|M denote the modulo M
residue of an integer A, that is, the least non-negative
remainder of the division of A by M. Then A is represented by

the L-tuple {a1, …, aL}, where
imi Aa ? .

Moduli of the 2
n
±1 form are most commonly used in RNS,

given apart from fast implementations of the arithmetic
operations for them, fast converters from/to residue to/from
binary. The modulo 2

n
+1 channel has to deal with operands

that are one bit wider than those of the modulo 2
n
-1 channel,

forming a performance bottleneck. The diminished-one
representation was introduced to face this problem [3]. In the
diminished-one representation each modulo 2

n
+1 operand is

represented decreased by one compared to its normal
representation. Zero values in input operands or results are
indicated by special bits (zero indication bits) and are treated as
special cases. The diminished-one representation requires only
n-bit wide computation channels and is therefore more suitable
for configurable modulo 2

n
±1 architectures.

Configurable computing for RNS-based systems has
recently gained a significant interest. Configurable modulo
architectures [4], that is, architectures for arithmetic circuits
that support more than one modulo cases are very useful
building blocks since they can be exploited for hardware reuse

offering substantial area savings. They can be applied in RNS-
based digital signal processors for providing flexibility and for
easing the customization of the desired dynamic range. A
reconfigurable RNS datapath has been presented in [5]. For
attaining low power consumption, some of its modulo channels
can be turned on or switched off depending on the dynamic
range required by an application, while each can be
programmed with the required modulus value or the required
arithmetic operation. Configurable architectures are also
extremely useful in fault-tolerant RNS-based systems for
reducing the hardware costs of the redundant RNS channels [6]
[7]. A redundant RNS is formed by adding extra channels that
are used for error detection and correction either by replication
and comparison or by replacing the faulty ones. In case a
modulus channel fails, then one of the extra ones can be used
instead. The use of configurable channels instead of spare units
for every distinct modulus value results in much lower area [8].
Finally, configurable architectures can be also utilized in
cryptographic processors for executing multiple security
protocols.

To this end, several configurable multi-moduli architectures
have been presented during the last years. Configurable two-
operand and multi-operand modulo adders have been presented
in [8-10]. Furthermore, [11-14] have presented configurable
multipliers and squarers for modulo 2

n
±1 or for the moduli set

{2
n
-1, 2

n
, 2

n
+1}.

In this paper we propose a novel architecture for designing
area-time efficient configurable modulo 2

n
±1 multipliers. For

the 2
n
+1 case, the diminished-one representation is adopted

while zero values are also taken into consideration. The
proposed architecture uses radix-4 Booth encoding to reduce
the number of generated partial products. An adder tree and a
sparse-parallel prefix configurable final adder are utilized for
partial product addition. Area and delay estimates, based on the
unit-gate model as well as on specific VLSI implementations
indicate that the proposed multipliers are significantly smaller
than those previously reported in [12] while also being faster
for medium and large values of n.

The remaining of the paper is organized as follows. Section
II presents some basics on modulo 2

n
±1 multiplication. The

proposed architecture is introduced in Section III while Section
IV presents experimental results and comparisons against a
previous solution. Section V concludes the paper.

PRIME 2012, Aachen, Germany Session TF1 – DSP

107

II. BACKGROUND

In the following, we assume an even value for n, which is
the commonly examined case for Booth-encoded multipliers.
However, at the end of the next Section we extend the
proposed architecture in order to cover odd values of n as well.
Hereafter, x is used to denote the complement of x.

A. Booth-Encoded Modulo 2
n
-1 Multipliers

Suppose that A=an-1an-2…a1a0 and B=bn-1bn-2…b1b0 are two
n-bit operands in modulo 2

n
-1 representation, where A is the

multiplicand and B is the multiplier. In order to half the number
of the partial products of the multiplication and thus reduce the
implementation area, the multiplier B can be encoded
according to the modified Booth algorithm as

12

12

0

22
/

/

?Â?
n

n

i

i
iBB , where Bi=/2b2i+1+b2i+b2i-1 are the Booth-

encoded digits and b-1=bn-1. The value of the product P of A
and B taken modulo 2

n
-1 can then be expressed as [15]:

"
12

12

0
12 /

/

?/ Â??
n

n

n

i
iPPABP " *3+"

where
12

22 /?
n

i
ii ABPP . Each n-bit wide partial product can

be derived according to Table I, while the n/2 partial products
must then be added modulo 2

n
-1 in order to derive the result of

the multiplication.

B. Booth-Encoded Diminished-one Modulo 2
n
+1 Multipliers

Suppose now that A and B are two non-zero modulo 2
n
+1

operands, that is A,BŒ(0,2
n
]. Let their diminished-one

representations be denoted as A-1=A-1=an-1an-2…a1a0 and
B-1=B-1=bn-1bn-2…b1b0, respectively. Among the various
architectures that appear in the literature for Booth-encoded
diminished-one modulo 2

n
+1 multiplication, the architecture

that is more suitable for the design of a configurable modulo
2

n
±1 multiplier is the one proposed in [16]. According to [16],

the value of the diminished-one representation of the product

A·B taken modulo 2
n
+1 can be expressed as:

"
12

0

12

0
121 121

-

/

?-/ ----?/? Â
n

n nCCTPPABP
n

i
i

" *4+"
The n/2 n-bit wide partial products PPi can be derived

according to Table II, where Bi=/2b2i+1+b2i+b2i-1 denotes the

corresponding Booth-encoded digit of B-1 (
11 // ? nbb). CT is

the n-bit wide vector
0112/ 000 zzzn A/ with zi denoting whether

Bi has a zero value or not. C0 is constant and equal to 0. The n/2

partial products PPi along with CT and C0 must then be added

modulo 2
n
+1 so as to form the diminished-one result of the

multiplication. Note that although C0 is equal to 0, it must be
added modulo 2

n
+1 with the rest partial products, for creating a

constant correction term (/n/2) in order to compensate the term
n/2 of (2) (more details are given in [16]).

TABLE I. MODULO 2n-1 PARTIAL PRODUCT FORMATION

iB b2i+1 b2i b2i-1
PPi

PPi,[n-1] … PPi,[2i+1] PPi,[2i] PPi,[2i-1] … PPi,[0]

 0 0 0 0
0

 or 1
…
…

0
1

0
1

0
1

…
…

0
1

+1 0 0 1 12 // ina …
1a

 0a
1/na … ina 2/

+1 0 1 0 12 // ina …
1a

 0a
1/na … ina 2/

+2

0 1 1 22 // ina …
0a

1/na

2/na … 12 // ina

-2

1 0 0 22 // ina …
0a

1/na

2/na … 12 // ina

-1

1 0 1 12 // ina …
1a

 0a
1/na … ina 2/

-1

1 1 0 12 // ina …
1a

 0a
1/na … ina 2/

 0 1 1 1
0

 or 1
…
…

0
1

0
1

0
1

…
…

0
1

TABLE II. MODULO 2n+1 PARTIAL PRODUCT FORMATION

iB b2i+1 b2i b2i-1
PPi

PPi,[n-1] … PPi,[2i+1] PPi,[2i] PPi,[2i-1] … PPi,[0]

 0 0 0 0 0 … 0 0 1 … 1

+1 0 0 1 12 // ina …
1a

0a

1/na … ina 2/

+1 0 1 0 12 // ina …
1a

 0a
1/na … ina 2/

+2

0 1 1 22 // ina …
0a

1/na

2/na … 12 // ina

-2

1 0 0 22 // ina …
0a

1/na

2/na … 12 // ina

-1

1 0 1 12 // ina …
1a

0a

1/na … ina 2/

-1

1 1 0 12 // ina …
1a

0a

1/na … ina 2/

 0 1 1 1 0 … 0 0 1 … 1

III. PROPOSED CONFIGURABLE MODULO 2
n
±1 MULTIPLIERS

The proposed architecture for designing configurable
modulo 2

n
±1 multipliers is based on the architectures described

in the previous section and, depending on the value of a select
signal, sel, can perform either modulo 2

n
-1 (sel=0) or modulo

2
n
+1 multiplication (sel=1). The resulting multipliers consist of

three main units: (a) the partial product generation (PPG), (b)
the partial product reduction (PPR), and (c) the final parallel
addition (FPA) units. Each one is described in the following.

A. Partial Product Generation (PPG)

Both modulo 2
n
-1 and 2

n
+1 Booth-encoded multiplication

architectures that have been described in the previous section
are based on the generation of n/2 n-bit wide partial products.
Fig. 1 presents logic implementations for the Booth Encoder
(BE) (ignore the shaded logic gates for now) and the Booth
Selector (BS) blocks that have to be used in order to derive the
partial product bits. Suppose that we encode a zero partial
product in the modulo 2

n
-1 case only as 0…0 and not as 1…1.

Then, by comparing Tables I and II we can see that for all PPis,
the partial product bits with weights 2

2i+1
 up to 2

n-1
 are the same

in both modulo cases and thus modulo independent. On the
other hand, the partial product bits with weights 2

0
 up to 2

2i-1

have complementary values in the two modulo cases. We can
thus utilize 2-input XOR gates at the outputs of some BS
blocks to selectively invert the values of the latter partial

Paper TF11 PRIME 2012, Aachen, Germany

108

b2i-1

b2i

b2i+1

1xi

2xi

si

zi

bz

az

(a)

ai

1x

ai-1
s2x

di

(b)

Figure 1. (a) Booth Encoder (BE) and (b) Booth Selector (BS) blocks

product bits depending on the value of sel. The partial product
bit with weight 2

2i
 has to be inverted only when the

corresponding Booth-encoded digit Bi has a value equal to ±2.
Hence one 2-input XOR gate can also be used at the output of
the corresponding BS block in each PPi with one input driven

by sel®2xi, where ® denotes the logical AND and 2xi denotes
the output of the BE block that designates that Bi=±2.

Furthermore, the least significant digit, B0, of the Booth-

encoded operand has to use as b-1 either bn-1 or 1/nb . Therefore,

one more XOR gate with sel has to be utilized at the input of
the least significant BE block to invert bn-1 when necessary.

Finally, since the CT vector should be equal to 0…0 in the

modulo 2
n
-1 case, we have to use the n-bit vector

)()()(0112/ selzselselzselselzsel n ®®®/ A in its place.

B. Partial Product Reduction (PPR)

In the proposed architecture, the n/2+2 vectors that have
been generated (i.e. the n/2 PPis with the extra logic gates, the

CT and the C0) are reduced in two n-bit summands by a

Dadda adder tree of Carry Save Adders (CSAs). Each CSA
consists of n full adders (FA), while the one that accepts C0 can
be simplified to n half adders (HAs). The carry output at the
most significant bit position of a CSA has to be moved to the
least significant bit position either inverted (modulo 2

n
+1 case)

or non-inverted (modulo 2
n
-1 case) [12]. Hence, in the

proposed architecture, each carry at the most significant bit
position of a CSA is driven to a 2-input XOR gate with the
second input driven by sel. The XOR gate drives the correct
value to the least significant bit position.

C. Final Parallel Addition (FPA)

The two n-bit outputs of the adder tree must be finally
added using a two-input configurable modulo 2

n
±1 adder.

Although a parallel prefix-based modulo adder with an extra
prefix level for the end-around-carry, as the one described in
[12], can be utilized, a more efficient solution in both area and
delay terms can be achieved by simplifying the recently
proposed configurable sparse parallel-prefix modulo {2

n
-1, 2

n
,

2
n
+1} adder [10]. We adopt the latter approach in the proposed

architecture to save as much area and delay as possible.

D. Zero Handling in Modulo 2
n
+1 Multiplication

So far we have assumed that the inputs of the proposed
multiplier in the diminished-one modulo 2

n
+1 case correspond

to non-zero values. In the following we examine the case
where either A or B or both are equal to zero. Let az and bz
denote the zero indication bits of inputs A and B, respectively,
and let pz denote the zero indication bit of the result of the

multiplication. The product A·B taken modulo 2
n
+1 is equal to

0 when either (a) A or B or both A and B are equal to 0, or (b)

A,B≠0 and 0
12
?-nAB (eg. in the

9
33· multiplication). Case

(a) can be taken into account by a 2-input OR gate driven by az
and bz. Case (b) can be easily covered according to [10]. By
merging the above two cases, we conclude that the zero
indication bit of the result can be given by the logical equation

0:1/°°? nzzz Dbap , where ° denotes the logical OR

operation and Dn-1:0 is a signal indicating that the final adder’s
input operands are bitwise complementary. This signal is
provided without any delay cost by the sparse parallel-prefix
adder of [10]. Furthermore, in order to force the n-bit output of
the final adder to the value of 0 when A=0 or B=0, we can force
the output of each BE block to zero [16]. This can be achieved
by augmenting each BE block by the shaded logic gates shown
in Fig. 1(a), which take into consideration the values of az and
bz.

As an example, Fig. 2 presents the configurable modulo
2

8
±1 multiplier, according to the proposed architecture.

For odd values of n, the PPG unit produces (n+1)/2+2
partial products instead of n/2+2. The proposed architecture
can be easily extended to consider those values of n as well.
The only modifications required are: (i) signal b-1 that is used
by the least significant BE must be driven directly by sel, since
it is equal to either 0 (2

n
-1) [15] or 1 (2

n
+1) [16], (ii) the input

b2i+1 of the most significant BE must be connected to 0 for both

moduli cases and (iii) the n-bit vector CT must be replaced by

)()()(012/1 selzselselzselselzn ®®®/ A .

BE BE BE BE

Partial Product

Reduction

(6-2 compressor)

Sparse Parallel-Prefix Modulo 2
8
±1 Adder

CT formation

b7 b6 b5 b5 b4 b3 b3 b2 b1 b1 b0b5

2x2 1x2 s2 z22x3 1x3 s3 z3 2x1 1x1 s1 z1 2x0 1x0 s0 z0

A/A-1

z3 z2 z1 z0

CT

2x3

PP3
2x2

PP2
2x1

PP1
2x0

PP0

C0=0...0

P/P-1

sel

b7 sel

8 888

88

8888

8

sel

A/A-1 A/A-1 A/A-1

az

bz

az

bz

az

bz

az

bz

BS BS. . . BSBS BS. . . BS BS BS. . . BS BS BS. . . BS

sel sel sel sel

az

bz

D7:0

pz

8

8

Figure 2. Proposed configurable modulo 28±1 multiplier

PRIME 2012, Aachen, Germany Session TF1 – DSP

109

IV. EVALUATION AND COMPARISON

According to the proposed architecture, a configurable

modulo 2
n
±1 multiplier consists of: (a) É Ú2)1(-n BE blocks,

(b) É Ú nn ·- 2)1(BS blocks, (c) É Ú2)1(-n CSAs, each one

composed of n FAs or HAs and one 2-input XOR gate, and (d)
a sparse parallel-prefix configurable modulo 2

n
±1 adder [10]. It

also uses: (a) É Ú2
2)1(-n XOR gates and É Ú2)1(-n AND

gates for deriving the modulo dependent partial product bits,

(b) É Ú2)1(-n AND gates for forming the CT vector, (c) one

3-input OR gate for the zero indication bit of the result, and (d)
one XOR gate at the input of the least significant BE block
(required only for even values of n).

We compare the proposed multipliers against those
presented in [12] which are the only available in the literature.
Table III presents the area and delay requirements of both
solutions for even values of n, in terms of gate equivalents
according to the unit-gate model [17]. Similar results can be
easily derived for odd values of n but are omitted due to lack of
space. ׇ(k) denotes the minimum number of levels of an adder
tree that processes k input operands. We observe that the
proposed multipliers are more area efficient than those of [12]
while savings in delay may also be achieved for medium and
large values of n.

We also described in HDL configurable multipliers for
several values of n (8, 16, 32 and 64). After validating the
correct operation of the HDL descriptions via simulation, we
synthesized them in a standard cell 90nm CMOS technology,
using a standard delay optimization script, and derived
estimates for area and delay. The attained results for both the
proposed multipliers and those of [12] are given in Table IV.
The proposed multipliers are significantly smaller than those of
[12] in every examined case. They are also faster for values of
n greater than 8. The offered savings in area are up to 26.7%
while those in delay are up to 23.7% in the examined
wordlengths. The savings are attributed to the Booth encoding
of the B input operand which reduces the area and the delay of
the PPR unit and to the use of the sparse parallel-prefix final
adder.

TABLE III. UNIT-GATE AREA AND DELAY ESTIMATIONS

 Area Delay

Unit
 [12]

(gate eqs.)

Proposed

(gate eqs.)

 [12]

(gate eqs.)

Proposed

(gate eqs.)

PPG 2n2+3n+3 3n2+7n+2 5 12

PPR 7n2-9n+6 (7/2)n2-3n 5ׇ(n+1) 5ׇ(n/2+2)

FPA
 (3/2)nlogn

+7n +3

(11/8)nlogn

+(123/8)n+2
 2logn+8 2logn+3

Total
 9n2+(3/2)nlogn

+n+12

(13/2)n2 +(11/8)nlogn

+(155/8)n+4

2logn+13

+5ׇ(n+1)

2logn+15

+5ׇ(n/2+2)

TABLE IV. CMOS VLSI EXPERIMENTAL RESULTS

 Area Delay

n
 [12]

(ȝm2)

Proposed

(ȝm2)

Savings

(%)

 [12]

(ns)

Proposed

(ns)

Savings

(%)

8 5389 4415 18.1 1.61 1.60 0.6

16 17958 14480 19.4 2.40 2.07 13.6

32 69389 51886 25.2 3.21 2.45 23.7
64 259007 189872 26.7 4.11 3.30 19.6

V. CONCLUSION

An architecture for designing configurable modulo 2
n
±1

multipliers has been presented. For the modulo 2
n
+1 case, the

diminished-one representation is considered. The number of
the partial products that are generated is reduced by using
radix-4 Booth encoding of the multiplier, while their
summation is performed by a Dadda adder tree and a sparse
parallel-prefix configurable modulo adder. Experimental data
verified that the proposed architecture results in more area-time
efficient circuits than the previously reported [12].

ACKNOWLEDGMENT

This research was supported by the Caratheodory
Programme of the University of Patras (D.178).

REFERENCES

[1] P. V. Ananda Mohan, Residue Number Systems: Algorithms and
Architectures, Netherlands: Kluwer Academic Publishers, 2002.

[2] A. Omondi and B. Premkumar, Residue Number Systems: Theory and
Implementation, London: Imperial College Press, 2007.

[3] L. Leibowitz, “A simplified binary arithmetic for the fermat number
transform,” IEEE Trans. Acoust., Speech, Signal Processing, vol. 24, no.
5, pp. 356-359, 1976.

[4] V. Paliouras and T. Stouraitis, “Multifunction architectures for RNS
processors,” IEEE Trans. on Circuits and Systems - II, vol. 46, no. 8, pp.
1041-1054, 1999.

[5] G. C. Cardarilli, A. Re, A. Nannarelli and M. Re, “Residue number
system reconfigurable datapath,” IEEE Int. Symp. Circuits and Systems,
pp. II-756-759, 2002.

[6] W. Jenkins, B. Schnaufer and A. Mansen, “Combined system-level
redundancy and modular arithmetic for fault tolerant digital signal
processing,” IEEE Int. Symp. Computer Arithmetic, pp. 28-35, 1993.

[7] A. P. Preethy, D. Radhakrishnan and A. Omondi, “Fault-tolerance
scheme for an RNS MAC: Performance and cost analysis,” IEEE Int.
Symp. Computer Arithmetic, pp. 717-720, 2001.

[8] G. Jaberipur and B. Parhami, “Unified approach to the design of
modulo-(2n±1) adders based on signed-LSB representation of residues,”
IEEE Int. Symp. Computer Arithmetic, pp. 57-64, 2009.

[9] C. –H. Chang, S. Menon, B. Cao and T. Srikanthan, “A configurable
dual-moduli multi-operand modulo adder,” IEEE Int. Symp. Circuits
and Systems, pp. 1630-1633, 2005.

[10] H. T. Vergos and D. Bakalis, “Area-time efficient multi-modulus adders
and their applications,” Elsevier Microprocessors and Microsystems,
2012, doi: 10.1016/j.micpro.2012.02.004, in press.

[11] S. Menon and C. –H. Chang, “A reconfigurable multi-modulus modulo
multiplier,” IEEE Asia Pacific Conf. Circuits and Systems, pp. 1168-
1171, 2006.

[12] T.-B. Juang, G.-L. Wu and Y.-C. Tsai, “Reconfigurable modulo 2n±1
multipliers,” 21st VLSI Design/CAD Symp., pp. 139-142, 2010.

[13] R. Muralidharan and C. –H. Chang, “Fixed and variable multi-modulus
squarer architectures for triple moduli base of RNS,” IEEE Int. Symp.
Circuits and Systems, pp. 441-444, 2009.

[14] D. Bakalis and H. T. Vergos, “Area-Efficient Multi-Moduli Squarers for
RNS,” Conf. Digital System Design, pp. 408-411, 2010.

[15] C. Efstathiou, H. T. Vergos and D. Nikolos, “Modified Booth modulo
2n-1 multipliers,” IEEE Trans. Computers, vol. 53, no. 3, pp. 370-374,
2004.

[16] J. W. Chen and R. H. Yao, “Efficient modulo 2n+1 multipliers for
diminished-1 representation,” IET Circuits, Devices & Systems, vol. 4,
no. 4, pp. 291-300, 2010.

[17] A. Tyagi, “A reduced-area scheme for carry-select adders,” IEEE Trans.
Computers, vol. 42, no. 10, pp. 1163-1170, 1993.

Paper TF11 PRIME 2012, Aachen, Germany

110

	TF1 – DSP
	TF11

