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Abstract—Multi-moduli architectures are very useful for 

reconfigurable digital processors and fault-tolerant systems that 

utilize the Residue Number System (RNS). In this paper we 

propose a novel architecture for configurable modulo 2n
±1 

multipliers. It uses the modified Booth encoding of the input 

operand for deriving the required partial products and an adder 

tree followed by a sparse parallel-prefix final adder for their 

addition. Experimental results show that the proposed 

multipliers offer significant savings in area and delay compared 

to those previously reported in the literature.  

Keywords-modulo 2n
±1 arithmetic; modulo multipliers; Booth-

encoding; configurable circuits; residue number system 

I.  INTRODUCTION 

The Residue Number System (RNS) is commonly adopted 
for speeding up computations in digital signal processing 
(DSP), cryptography and telecommunication applications and 
for fault-tolerant computing [1] [2]. A non-positional RNS is 
defined by a set of L moduli, suppose {m1, …, mL} that are 
pair-wise relatively prime. Let |A|M denote the modulo M 
residue of an integer A, that is, the least non-negative 
remainder of the division of A by M. Then A is represented by 

the L-tuple {a1, …, aL}, where 
imi Aa ? . 

Moduli of the 2
n
±1 form are most commonly used in RNS, 

given apart from fast implementations of the arithmetic 
operations for them, fast converters from/to residue to/from 
binary. The modulo 2

n
+1 channel has to deal with operands 

that are one bit wider than those of the modulo 2
n
-1 channel, 

forming a performance bottleneck. The diminished-one 
representation was introduced to face this problem [3]. In the 
diminished-one representation each modulo 2

n
+1 operand is 

represented decreased by one compared to its normal 
representation. Zero values in input operands or results are 
indicated by special bits (zero indication bits) and are treated as 
special cases. The diminished-one representation requires only 
n-bit wide computation channels and is therefore more suitable 
for configurable modulo 2

n
±1 architectures. 

Configurable computing for RNS-based systems has 
recently gained a significant interest. Configurable modulo 
architectures [4], that is, architectures for arithmetic circuits 
that support more than one modulo cases are very useful 
building blocks since they can be exploited for hardware reuse 

offering substantial area savings. They can be applied in RNS-
based digital signal processors for providing flexibility and for 
easing the customization of the desired dynamic range. A 
reconfigurable RNS datapath has been presented in [5]. For 
attaining low power consumption, some of its modulo channels 
can be turned on or switched off depending on the dynamic 
range required by an application, while each can be 
programmed with the required modulus value or the required 
arithmetic operation. Configurable architectures are also 
extremely useful in fault-tolerant RNS-based systems for 
reducing the hardware costs of the redundant RNS channels [6] 
[7]. A redundant RNS is formed by adding extra channels that 
are used for error detection and correction either by replication 
and comparison or by replacing the faulty ones. In case a 
modulus channel fails, then one of the extra ones can be used 
instead. The use of configurable channels instead of spare units 
for every distinct modulus value results in much lower area [8]. 
Finally, configurable architectures can be also utilized in 
cryptographic processors for executing multiple security 
protocols.  

To this end, several configurable multi-moduli architectures 
have been presented during the last years. Configurable two-
operand and multi-operand modulo adders have been presented 
in [8-10]. Furthermore, [11-14] have presented configurable 
multipliers and squarers for modulo 2

n
±1 or for the moduli set 

{2
n
-1, 2

n
, 2

n
+1}. 

In this paper we propose a novel architecture for designing 
area-time efficient configurable modulo 2

n
±1 multipliers. For 

the 2
n
+1 case, the diminished-one representation is adopted 

while zero values are also taken into consideration. The 
proposed architecture uses radix-4 Booth encoding to reduce 
the number of generated partial products. An adder tree and a 
sparse-parallel prefix configurable final adder are utilized for 
partial product addition. Area and delay estimates, based on the 
unit-gate model as well as on specific VLSI implementations 
indicate that the proposed multipliers are significantly smaller 
than those previously reported in [12] while also being faster 
for medium and large values of n. 

The remaining of the paper is organized as follows. Section 
II presents some basics on modulo 2

n
±1 multiplication. The 

proposed architecture is introduced in Section III while Section 
IV presents experimental results and comparisons against a 
previous solution. Section V concludes the paper. 
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II. BACKGROUND 

In the following, we assume an even value for n, which is 
the commonly examined case for Booth-encoded multipliers. 
However, at the end of the next Section we extend the 
proposed architecture in order to cover odd values of n as well. 
Hereafter, x is used to denote the complement of x.  

A. Booth-Encoded Modulo 2
n
-1 Multipliers 

Suppose that A=an-1an-2…a1a0 and B=bn-1bn-2…b1b0 are two 
n-bit operands in modulo 2

n
-1 representation, where A is the 

multiplicand and B is the multiplier. In order to half the number 
of the partial products of the multiplication and thus reduce the 
implementation area, the multiplier B can be encoded 
according to the modified Booth algorithm as 

12

12

0

22
/

/

?Â?
n

n

i

i
iBB , where Bi=/2b2i+1+b2i+b2i-1 are the Booth-

encoded digits and b-1=bn-1. The value of the product P of A 
and B taken modulo 2

n
-1 can then be expressed as [15]:  

"
12

12

0
12 /

/

?/ Â??
n

n

n

i
iPPABP " *3+"

where 
12

22 /?
n

i
ii ABPP . Each n-bit wide partial product can 

be derived according to Table I, while the n/2 partial products 
must then be added modulo 2

n
-1 in order to derive the result of 

the multiplication.
 
 

B. Booth-Encoded Diminished-one Modulo 2
n
+1 Multipliers 

Suppose now that A and B are two non-zero modulo 2
n
+1 

operands, that is A,BŒ(0,2
n
]. Let their diminished-one 

representations be denoted as A-1=A-1=an-1an-2…a1a0 and        
B-1=B-1=bn-1bn-2…b1b0, respectively. Among the various 
architectures that appear in the literature for Booth-encoded 
diminished-one modulo 2

n
+1 multiplication, the architecture 

that is more suitable for the design of a configurable modulo 
2

n
±1 multiplier is the one proposed in [16]. According to [16], 

the value of the diminished-one representation of the product 

A·B taken modulo 2
n
+1 can be expressed as: 

"
12

0

12

0
121 121

-

/

?-/ ----?/? Â
n

n nCCTPPABP
n

i
i

" *4+"
The n/2 n-bit wide partial products PPi can be derived 

according to Table II, where Bi=/2b2i+1+b2i+b2i-1 denotes the 

corresponding Booth-encoded digit of B-1 (
11 // ? nbb ). CT is 

the n-bit wide vector 
0112/ 000 zzzn A/  with zi denoting whether 

Bi has a zero value or not. C0 is constant and equal to 0. The n/2 

partial products PPi along with CT  and C0 must then be added 

modulo 2
n
+1 so as to form the diminished-one result of the 

multiplication. Note that although C0 is equal to 0, it must be 
added modulo 2

n
+1 with the rest partial products, for creating a 

constant correction term (/n/2) in order to compensate the term 
n/2 of (2) (more details are given in [16]).  

 

TABLE I.  MODULO 2n-1 PARTIAL PRODUCT FORMATION 

iB  b2i+1 b2i b2i-1 
PPi 

PPi,[n-1] … PPi,[2i+1] PPi,[2i] PPi,[2i-1] … PPi,[0] 

 0 0 0 0 
0 

 or   1  
… 
… 

0 
1 

0 
1 

0 
1 

… 
… 

0 
1 

+1 0 0 1 12 // ina  … 
1a

 0a  
1/na  … ina 2/  

+1 0 1 0 12 // ina  … 
1a

 0a  
1/na  … ina 2/  

+2
 

0 1 1 22 // ina  … 
0a

 
1/na  

2/na  … 12 // ina  

-2
 

1 0 0 22 // ina  … 
0a

 
1/na  

2/na  … 12 // ina  

-1
 

1 0 1 12 // ina  … 
1a

 0a  
1/na  … ina 2/  

-1
 

1 1 0 12 // ina  … 
1a

 0a  
1/na  … ina 2/  

 0 1 1 1 
0 

 or   1 
… 
… 

0 
1 

0 
1 

0 
1 

… 
… 

0 
1 

TABLE II.  MODULO 2n+1 PARTIAL PRODUCT FORMATION 

iB  b2i+1 b2i b2i-1 
PPi

PPi,[n-1] … PPi,[2i+1] PPi,[2i] PPi,[2i-1] … PPi,[0] 

 0 0 0 0 0 … 0 0 1 … 1 

+1 0 0 1 12 // ina  … 
1a

 
0a  

1/na  … ina 2/  

+1 0 1 0 12 // ina  … 
1a

 0a  
1/na  … ina 2/  

+2
 

0 1 1 22 // ina  … 
0a

 
1/na  

2/na  … 12 // ina  

-2
 

1 0 0 22 // ina  … 
0a

 
1/na  

2/na  … 12 // ina  

-1
 

1 0 1 12 // ina  … 
1a

 
0a  

1/na  … ina 2/  

-1
 

1 1 0 12 // ina  … 
1a

 
0a  

1/na  … ina 2/  

 0 1 1 1 0 … 0 0 1 … 1 

 

III. PROPOSED CONFIGURABLE MODULO 2
n
±1 MULTIPLIERS 

The proposed architecture for designing configurable 
modulo 2

n
±1 multipliers is based on the architectures described 

in the previous section and, depending on the value of a select 
signal, sel, can perform either modulo 2

n
-1 (sel=0) or modulo 

2
n
+1 multiplication (sel=1). The resulting multipliers consist of 

three main units: (a) the partial product generation (PPG), (b) 
the partial product reduction (PPR), and (c) the final parallel 
addition (FPA) units. Each one is described in the following. 

A. Partial Product Generation (PPG) 

Both modulo 2
n
-1 and 2

n
+1 Booth-encoded multiplication 

architectures that have been described in the previous section 
are based on the generation of n/2 n-bit wide partial products. 
Fig. 1 presents logic implementations for the Booth Encoder 
(BE) (ignore the shaded logic gates for now) and the Booth 
Selector (BS) blocks that have to be used in order to derive the 
partial product bits. Suppose that we encode a zero partial 
product in the modulo 2

n
-1 case only as 0…0 and not as 1…1. 

Then, by comparing Tables I and II we can see that for all PPis, 
the partial product bits with weights 2

2i+1
 up to 2

n-1
 are the same 

in both modulo cases and thus modulo independent. On the 
other hand, the partial product bits with weights 2

0
 up to 2

2i-1
 

have complementary values in the two modulo cases. We can 
thus utilize 2-input XOR gates at the outputs of some BS 
blocks   to  selectively  invert   the  values  of  the  latter  partial   
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b2i-1

b2i

b2i+1

1xi

2xi

si

zi

bz

az

 
(a) 

ai

1x

ai-1
s2x

di

 
(b) 

Figure 1.  (a) Booth Encoder (BE) and (b) Booth Selector (BS) blocks 

product bits depending on the value of sel. The partial product 
bit with weight 2

2i
 has to be inverted only when the 

corresponding Booth-encoded digit Bi has a value equal to ±2. 
Hence one 2-input XOR gate can also be used at the output of 
the corresponding BS block in each PPi with one input driven 

by sel®2xi, where ® denotes the logical AND and 2xi denotes 
the output of the BE block that designates that Bi=±2.  

Furthermore, the least significant digit, B0, of the Booth-

encoded operand has to use as b-1 either bn-1 or 1/nb . Therefore, 

one more XOR gate with sel has to be utilized at the input of 
the least significant BE block to invert bn-1 when necessary. 

Finally, since the CT  vector should be equal to 0…0 in the 

modulo 2
n
-1 case, we have to use the n-bit vector 

)()()( 0112/ selzselselzselselzsel n ®®®/ A  in its place.  

B. Partial Product Reduction (PPR) 

In the proposed architecture, the n/2+2 vectors that have 
been generated (i.e. the n/2 PPis with the extra logic gates, the 

CT  and the C0) are reduced in two n-bit summands by a 

Dadda adder tree of Carry Save Adders (CSAs). Each CSA 
consists of n full adders (FA), while the one that accepts C0 can 
be simplified to n half adders (HAs). The carry output at the 
most significant bit position of a CSA has to be moved to the 
least significant bit position either inverted (modulo 2

n
+1 case) 

or non-inverted (modulo 2
n
-1 case) [12]. Hence, in the 

proposed architecture, each carry at the most significant bit 
position of a CSA is driven to a 2-input XOR gate with the 
second input driven by sel. The XOR gate drives the correct 
value to the least significant bit position. 

C. Final Parallel Addition (FPA) 

The two n-bit outputs of the adder tree must be finally 
added using a two-input configurable modulo 2

n
±1 adder. 

Although a parallel prefix-based modulo adder with an extra 
prefix level for the end-around-carry, as the one described in 
[12], can be utilized, a more efficient solution in both area and 
delay terms can be achieved by simplifying the recently 
proposed configurable sparse parallel-prefix modulo {2

n
-1, 2

n
, 

2
n
+1} adder [10]. We adopt the latter approach in the proposed 

architecture to save as much area and delay as possible. 

D. Zero Handling in Modulo 2
n
+1 Multiplication 

So far we have assumed that the inputs of the proposed 
multiplier in the diminished-one modulo 2

n
+1 case correspond 

to non-zero values. In the following we examine the case 
where either A or B or both are equal to zero. Let az and bz 
denote the zero indication bits of inputs A and B, respectively, 
and let pz denote the zero indication bit of the result of the 

multiplication. The product A·B taken modulo 2
n
+1 is equal to 

0 when either (a) A or B or both A and B are equal to 0, or (b) 

A,B≠0 and 0
12
?-nAB (eg. in the 

9
33·  multiplication). Case 

(a) can be taken into account by a 2-input OR gate driven by az 
and bz. Case (b) can be easily covered according to [10]. By 
merging the above two cases, we conclude that the zero 
indication bit of the result can be given by the logical equation 

0:1/°°? nzzz Dbap , where ° denotes the logical OR 

operation and Dn-1:0 is a signal indicating that the final adder’s 
input operands are bitwise complementary. This signal is 
provided without any delay cost by the sparse parallel-prefix 
adder of [10]. Furthermore, in order to force the n-bit output of 
the final adder to the value of 0 when A=0 or B=0, we can force 
the output of each BE block to zero [16]. This can be achieved 
by augmenting each BE block by the shaded logic gates shown 
in Fig. 1(a), which take into consideration the values of az and 
bz. 

As an example, Fig. 2 presents the configurable modulo 
2

8
±1 multiplier, according to the proposed architecture. 

For odd values of n, the PPG unit produces (n+1)/2+2 
partial products instead of n/2+2. The proposed architecture 
can be easily extended to consider those values of n as well. 
The only modifications required are: (i) signal b-1 that is used 
by the least significant BE must be driven directly by sel, since 
it is equal to either 0 (2

n
-1) [15] or 1 (2

n
+1) [16], (ii) the input 

b2i+1 of the most significant BE must be connected to 0 for both 

moduli cases and (iii) the n-bit vector CT  must be replaced by 

)()()( 012/1 selzselselzselselzn ®®®/ A . 

BE BE BE BE

Partial Product

Reduction

(6-2 compressor)

Sparse Parallel-Prefix Modulo 2
8
±1 Adder

CT formation

b7 b6 b5 b5 b4 b3 b3 b2 b1 b1 b0b5

2x2 1x2 s2 z22x3 1x3 s3 z3 2x1 1x1 s1 z1 2x0 1x0 s0 z0

A/A-1

z3 z2 z1 z0

CT

2x3

PP3
2x2

PP2
2x1

PP1
2x0

PP0

C0=0...0

P/P-1

sel

b7 sel

8 888

88

8888

8

sel

A/A-1 A/A-1 A/A-1

az

bz

az

bz

az

bz

az

bz

BS BS. . . BSBS BS. . . BS BS BS. . . BS BS BS. . . BS

sel sel sel sel

az

bz

D7:0

pz

8

8

 

Figure 2.  Proposed configurable modulo 28±1 multiplier 
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IV. EVALUATION AND COMPARISON 

According to the proposed architecture, a configurable 

modulo 2
n
±1 multiplier consists of: (a) É Ú2)1( -n  BE blocks, 

(b) É Ú nn ·- 2)1(  BS blocks, (c) É Ú2)1( -n  CSAs, each one 

composed of n FAs or HAs and one 2-input XOR gate, and (d) 
a sparse parallel-prefix configurable modulo 2

n
±1 adder [10]. It 

also uses: (a) É Ú2
2)1( -n  XOR gates and É Ú2)1( -n  AND 

gates for deriving the modulo dependent partial product bits, 

(b) É Ú2)1( -n  AND gates for forming the CT  vector, (c) one 

3-input OR gate for the zero indication bit of the result, and (d) 
one XOR gate at the input of the least significant BE block 
(required only for even values of n). 

We compare the proposed multipliers against those 
presented in [12] which are the only available in the literature. 
Table III presents the area and delay requirements of both 
solutions for even values of n, in terms of gate equivalents 
according to the unit-gate model [17]. Similar results can be 
easily derived for odd values of n but are omitted due to lack of 
space.  ׇ(k) denotes the minimum number of levels of an adder 
tree that processes k input operands. We observe that the 
proposed multipliers are more area efficient than those of [12] 
while savings in delay may also be achieved for medium and 
large values of n. 

We also described in HDL configurable multipliers for 
several values of n (8, 16, 32 and 64). After validating the 
correct operation of the HDL descriptions via simulation, we 
synthesized them in a standard cell 90nm CMOS technology, 
using a standard delay optimization script, and derived 
estimates for area and delay. The attained results for both the 
proposed multipliers and those of [12] are given in Table IV. 
The proposed multipliers are significantly smaller than those of 
[12] in every examined case. They are also faster for values of 
n greater than 8. The offered savings in area are up to 26.7% 
while those in delay are up to 23.7% in the examined 
wordlengths. The savings are attributed to the Booth encoding 
of the B input operand which reduces the area and the delay of 
the PPR unit and to the use of the sparse parallel-prefix final 
adder. 

TABLE III.  UNIT-GATE AREA AND DELAY ESTIMATIONS 

  Area  Delay 

Unit 
 [12] 

(gate eqs.) 

Proposed 

(gate eqs.) 

 [12] 

(gate eqs.) 

Proposed 

(gate eqs.) 

PPG  2n2+3n+3 3n2+7n+2  5 12 

PPR  7n2-9n+6 (7/2)n2-3n  5ׇ(n+1) 5ׇ(n/2+2) 

FPA 
 (3/2)nlogn 

+7n +3 

(11/8)nlogn 

+(123/8)n+2 
 2logn+8 2logn+3 

Total 
 9n2+(3/2)nlogn 

+n+12 

(13/2)n2 +(11/8)nlogn 

+(155/8)n+4 
 

2logn+13 

+5ׇ(n+1) 

2logn+15 

+5ׇ(n/2+2) 

TABLE IV.  CMOS VLSI EXPERIMENTAL RESULTS 

  Area  Delay 

n 
 [12] 

(ȝm2) 

Proposed 

(ȝm2) 

Savings 

(%) 

 [12] 

(ns) 

Proposed 

(ns) 

Savings 

(%) 

8  5389 4415 18.1  1.61 1.60 0.6 

16  17958 14480 19.4  2.40 2.07 13.6 

32  69389 51886 25.2  3.21 2.45 23.7 
64  259007 189872 26.7  4.11 3.30 19.6 

V. CONCLUSION 

An architecture for designing configurable modulo 2
n
±1 

multipliers has been presented. For the modulo 2
n
+1 case, the 

diminished-one representation is considered. The number of 
the partial products that are generated is reduced by using 
radix-4 Booth encoding of the multiplier, while their 
summation is performed by a Dadda adder tree and a sparse 
parallel-prefix configurable modulo adder. Experimental data 
verified that the proposed architecture results in more area-time 
efficient circuits than the previously reported [12]. 
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