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Abstract—The diminished-one representation has been 
proposed for RNS-based systems with moduli of the 2n+1 
forms as an encoding that is more efficient than the normal 
representation in the arithmetic processing units. However, its 
use necessitates a two-step reverse conversion, in which a 
diminished-to-normal conversion is first performed before the 
final residue-to-binary conversion resulting in performance 
loss. In this paper we introduce efficient modulo 2n+1 adders, 
subtractors and multipliers that accept diminished-one 
operands at their inputs and derive normal operands at their 
outputs, that is, we embed the diminished-to-normal 
conversion within the arithmetic processing. Experimental 
results show that the proposed one-step approach is more 
efficient in terms of delay. 

Keywords-residue number system; modulo arithmetic; 
modulo 2n+1 arithmetic units; diminished-one representation; 
normal representation 

I.  INTRODUCTION 
The Residue Number System (RNS) [1] [2] is an 

alternative number representation commonly adopted for 
speeding up computations in digital signal processing [3-6], 
cryptography [7-9] and telecommunication applications   
[10-12]. A non-positional RNS is defined by a set of L 
moduli, suppose {m1, …, mL} that are pair-wise relatively 
prime. An integer A has a unique representation in the RNS, 
given by the set {a1, …, aL} of residues, where 

imi Aa =  is 

the modulo mi residue of A. An operation ⊗ over an RNS is 
defined as (z1, …, zL) = (a1, …, aL) ⊗ (b1, …, bL), where 

imiii baz ⊗= . The computation of zi only depends on ai, bi, 

and mi implying that all zis can be computed in parallel, each 
in a separate arithmetic unit often called a channel. Since all 
channels operate in parallel and each deals with narrow 
residues instead of wide numbers, significant speedup over 
the usual binary representation may be achieved. 

An RNS-based system consists of three main blocks. At 
first, all binary inputs are converted to their corresponding 
sets of residues with binary-to-residue (forward) converters, 
according to the specified moduli set. Then, the arithmetic 
processing is performed in parallel in each modulo channel. 
The arithmetic computations that are usually performed 
consist of several additions, subtractions and multiplications, 
which can be efficiently realized in modulo arithmetic. 

Finally, the RNS representation of the results is converted 
back to binary with residue-to-binary (reverse) converters.   

RNS channels with moduli of the 2n, 2n-1 or 2n+1 forms 
have received significant attention. This is because the 
arithmetic circuits that have been proposed for the 2n±1 
moduli are almost as efficient as the binary ones for the same 
operand widths [13-27]. Furthermore, efficient converters 
exist between the residue and the binary representation for 
various moduli sets [26] [28-38]. In such moduli sets, the 
2n+1 channel has to deal with operands one bit wider than 
the corresponding 2n-1 or 2n channels, leading to a 
performance bottleneck. To avoid this, and given that in the 
case of a zero operand the result can be derived 
straightforwardly, [39] introduced the diminished-one 
representation. In the diminished-one representation each 
operand is represented decreased by one compared to its 
normal representation and hence only n bits are required for 
its representation. A separate bit is utilized to indicate a zero 
operand or result. The diminished-one representation has the 
advantage that it allows to better equalize the delay of the 
modulo 2n+1 channel with the delay of the remaining 
channels of the moduli set. During the last years, efficient 
architectures for diminished-one modulo 2n+1 addition, 
subtraction and multiplication have been presented in the 
open literature, that are more efficient than those for the 
normal representation [14] [15] [19] [21] [22] [24] [26] [27]. 
To this end, the diminished-one representation is preferred 
for modulo channels of the 2n+1 forms in RNS-based 
systems. 

Binary-to-residue conversion for the diminished-one 
representation is equally efficient as the conversion for the 
normal representation [26] [40]. However, almost all 
residue-to-binary converters that have been reported until 
now assume a normal representation for the residues of the 
2n+1 forms. The only exception is the reverse converter that 
is reported in [26] for the {2n-1, 2n+k, 2n+1} moduli set. 
Hence, if the diminished-one representation is adopted in 
order to speed up the arithmetic processing, then a two-step 
approach is required in the reverse conversion; a diminished-
to-normal converter has to be used before the final residue-
to-binary conversion. The diminished-to-normal converter 
can be based on a binary incrementer [15] but its logarithmic 
delay [41] can cancel all the speedup achieved in the 
arithmetic processing. 

In this paper we explore the embedding of the 
diminished-to-normal conversion within the arithmetic 
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processing units. To this end, we present novel architectures 
for designing modulo 2n+1 arithmetic units (adders, 
subtractors and multipliers), that assume the diminished-one 
representation at the inputs and the normal representation at 
the outputs. The proposed architectures are based on those of 
the corresponding diminished-one arithmetic units. They can 
be efficiently utilized in RNS-based systems with moduli of 
the 2n+1 forms where the arithmetic processing is based on 
the diminished-one representation while the reverse 
conversion assumes the normal representation.  

The remaining of the paper is organized as follows. The 
next two sections present novel modulo 2n+1 adders and 
subtractors while section IV presents novel modulo 2n+1 
multipliers. Section V presents experimental results and 
comparisons. The last section concludes the paper. 

II. MODULO 2n+1 ADDITION 
Suppose that A and B denote two modulo 2n+1 operands, 

that is, 12,0 +<≤ nBA . Let (az, A*) and (bz, B*) denote the 
diminished-one representations of A and B, respectively, 
where az and bz are the zero indication bits of the two 
operands that are equal to 1 only when A or B is equal to 0 
and A*=an-1…a0 and B*=bn-1…b0 are n-bit wide vectors 
which are defined according to the following equations [15]:  

⎩
⎨
⎧

=
≠−

=
0,0
0,1*

A
AA

A ,  
⎩
⎨
⎧

=
≠−

=
0,0
0,1*

B
BB

B  

Given the diminished-one representations of A and B, the 
sum of the two operands taken modulo 2n+1 in normal 
representation, according to the values of A and B, is 
summarized in Table I. 

Let us consider the following cases:  
 

• A ≠ 0 and B ≠ 0 (equivalently az = 0 and bz = 0) 
It holds that  

1212

**

12

**
12

112
++++

+++=++=+
nnnn BABABA . 

It is well known that a diminished-one adder produces at the 
output the n least significant bits of the sum of its input 
operands taken modulo 2n+1 increased by one [21]. The 
most significant bit of the abovementioned arithmetic 
operation can be derived by checking whether the two input 
operands are bitwise complementary [40]. Moreover, an n-
bit Carry Save Adder (CSA) with Inverted End-Around 
Carry  (IEAC),  composed  of  n  Full  Adders  (FAs)  and an  

TABLE I.  MODULO 2n+1 ADDITION 

az bz 12 +
+ nBA  

0 0 
12

** 2
+

++ nBA  

0 1 
12

** 1
+

++ nBA  

1 0 
12

** 1
+

++ nBA  

1 1 
12

**

+
+ nBA  

 

inverter, produces at its output, in carry and sum format, the 
sum of its input operands taken modulo 2n+1 increased by 
one. Hence, the first increment in the modulo addition 
operation (

12

** 1
+

++ nBA ) can be realized by a CSA with 

IEAC with inputs A*, B*  and 0, while the second can be 
realized by an enhanced diminished-one adder [40], as 
shown in Fig. 1 (rn…r0 denote the n+1 bits of the result). 
Obviously, the n FAs of the CSA are simplified to Half 
Adders (HAs). 

 
• A ≠ 0 and B = 0 or A = 0 and B ≠ 0 

In this case, only a single increment is required. We can 
still use the architecture of Fig. 1 as long as we inhibit the 
increment performed at the IEAC CSA. When A or B or both 
are equal to 0, the carry output of the most significant HA of 
the CSA is equal to 0 and thus its inverted value that is equal 
to 1 is driven to the least significant bit position (Y0 in Fig. 1) 
in the enhanced diminished-one adder. We can change this 
bit value to 0 by a 2-input NOR gate driven by the carry out 
of the HA and by az∨bz (∨ denotes a logic OR). The output of 
the NOR gate is driven to the least significant bit input of the 
enhanced diminished-one adder. 

 
• A = 0 and B = 0 (equivalently az = 1 and bz = 1) 

In this case, both increments must be inhibited. The 
modification described for the previous case inhibits the 
increment performed by the IEAC CSA in this case too, 
while the second inhibition can be performed by inverting 
the half-sum signal (h0) at the least significant bit position 
within the enhanced diminished-one adder, when az=bz=1. 

 
The complete architecture for the proposed modulo 2n+1 

adder is shown in Fig. 2. Note that none of the modifications 
made to the architecture of Fig. 1, in order to cover the last 
two cases, reside on the critical path of the circuit. 

 

HA HA HAHA

a0b0a1b1an‐2bn‐2an‐1bn‐1

scs cs sc

Xn‐1Yn‐1 Xn‐2Yn‐2 X1 Y1 X0 Y0

Enhanced Diminished‐one Adder

Y2

rn rn‐1 rn‐2 r2 r1 r0

c

 
Figure 1.  Modulo 2n+1 addition. 
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Figure 2.  Proposed modulo 2n+1 adder architecture. 

 

III. MODULO 2n+1 SUBTRACTION 
Let us now consider the modulo 2n+1 subtraction. Given 

the diminished-one representations of two modulo 2n+1 
operands A and B, (az, A*) and (bz, B*), the difference of A 
and B taken modulo 2n+1 in normal representation, 

12 +
− nBA , can be derived as follows. We distinguish the 

following four cases:   
 

• A ≠ 0 and B ≠ 0 
It holds that  

12

**

12

**

12

**

12

**
12

22)12(
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where *B  denotes the bitwise complement of B*. 
 
• A ≠ 0 and B = 0 

Since B*=0, –B* = +B* and therefore it holds that 
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• A = 0 and B ≠ 0 

It holds that  
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• A = 0 and B = 0 

Since B*=0, –B* = +B* and therefore it holds that 

12

**

12

**
12 +++

+=−=− nnn BABABA  

  
 

TABLE II.  MODULO 2n+1 SUBTRACTION 

Az Bz 12 +
− nBA  

0 0 
12

** 2
+

++
n

BA  

0 1 
12

** 1
+

++ nBA  

1 0 
12

** 1
+

++
n

BA  

1 1 
12

**

+
+ nBA  
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Figure 3.  Proposed modulo 2n+1 subtractor architecture. 

All four above cases are summarized in Table II. It is 
obvious that the modulo 2n+1 subtraction can be realized by 
the modulo 2n+1 adder presented in the previous section, 
provided that we complement the bits of B* when B ≠ 0 and 
leave the bits of B* unaltered when B = 0. The proposed 
architecture for modulo 2n+1 subtraction is shown in Fig. 3. 
 

IV. MODULO 2n+1 MULTIPLICATION 
Almost all architectures that have been presented, during 

the last few years, for modulo 2n+1 multiplication [24-27], 
consist of three stages. At first, all partial products (PPs) and 
correction terms (CTs) are formed. These are actually n-bit 
wide vectors. Then, a multi-operand adder  (usually an adder 
tree) composed of CSAs with IEAC is used to compress all 
PPs and CTs to two n-bit wide vectors that are finally added 
with a fast two-operand modulo 2n+1 adder in order to 
produce the result of the multiplication. 

Consider two modulo 2n+1 operands A and B and their 
corresponding diminished-one representations (az, A*) and 
(bz, B*). Assume at first that both A and B are not equal to 0. 
A diminished-one modulo 2n+1 multiplier will produce at its 
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output the diminished-one representation of the product of A 
and B, that is,  

12

****

12

**
12

1)1()1(1

+

++

++×=

−+×+=−×

n

nn

BABA

BABA
 

In order to get the product in normal representation we have 
to compute  

12

****

12

**
12

1

)1()1(

+

++

+++×=

+×+=×

n

nn

BABA

BABA
 

Hence, we can utilize any diminished-one architecture 
for modulo 2n+1 multiplication and we can get the normal 
representation of the result by: (a) increasing by one the CT 
of the diminished-one multiplier (which in several cases is 
constant), and (b) replacing the fast diminished-one two-
operand adder that produces the n-bit wide result with an 
enhanced diminished-one two-operand adder as the one 
presented in [40] that produces all n+1 bits of the result. The 
proposed architecture is shown in Fig. 4.  

We also have to take into account the cases where A or B 
(or both) are equal to 0. In these cases, A* = 0…0 or B* = 
0…0 (or both), but the architecture of Fig. 4 will produce a 
result which is not equal to 0 since it assumes that a 
diminished-one value of 0 at its inputs represents the normal 
value of 1. In order to get the correct result, we can simply 
force the n+1 outputs in these cases to logic 0 by a series of 
2-input AND gates driven by the logic NOR of the az and bz 
zero indication bits. The complete architecture is then given 
in Fig. 5. 

The proposed architecture can be based on any 
architecture for diminished-one modulo 2n+1 multiplication. 
In the following we present architectures that can be derived 
based on the diminished-one modulo multipliers presented in 
[27] and [24], which are considered the most efficient non-
recoded and Booth-recoded architectures in the open 
literature, respectively.  

The architecture of [27] derives a partial product matrix 
with n n-bit wide partial products and an additional n-bit 
correction term (CT) equal to 0…0( 11 −nba )( 11 −nba ). The 
partial products and the correction term are then added with 
an adder tree composed of CSAs with IEAC and finally a 
fast diminished-one two-operand adder is used to derive the 
n-bits of the result. We have to note that zero handling is not 
taken into consideration in the multipliers of [27]. According 
to Fig. 5, we can use the architecture of [27] for deriving the 
result of the multiplication in normal representation as long 
as we: (a) replace the fast diminished-one adder with the 
enhanced one [40] in order to get n+1 bits at the output, (b) 
add the 2-input AND gates and the 2-input NOR gate at the 
output for handling the zero operands and (c) increase the 
correction term by one. This is easily achieved by replacing 
the CT vector of [27] with the correction term 
0…01( 11 −nba ). 

Consider now the architecture of [24] which derives 
Booth-recoded diminished-one multipliers and assume that n 
is even. The architecture derives n/2+2 partial products, each 

n-bits wide. n/2 of them are attributed to the Booth-recoding, 
one is a correction term that is input dependent and the final 
partial product is a constant correction term with a value 
equal to 1. Similarly to the previous case, we can use the 
architecture of [24] for deriving the proposed modulo 
multiplier. What we have to do is to use the enhanced 
diminished-one adder and the AND gates at the output while 
also increasing the CT by one. 

 

 
Figure 4.  Modulo 2n+1 multiplication. 

 

 
Figure 5.  Proposed modulo 2n+1 multiplier architecture. 
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TABLE III.  UNIT-GATE DELAY AND AREA ESTIMATIONS 

  Diminished-one with zero handling Diminished-one + Converter Proposed
Delay

Adders  2logn + 6 3logn + 9 2logn + 5
Subtractors  2logn + 7 3logn + 10 2logn + 6
Multipliers  4D(n/2+2) + 2logn + 9 4D(n/2+2) + 3logn + 12 4D(n/2+2) + 2logn +10

Area
Adders  3nlogn + 3n + 6 (7/2)nlogn + 5n + 8 9/2nlogn + 7/2n + 9
Subtractors  3nlogn + 4n + 6 (7/2)nlogn + 6n + 8 9/2nlogn + 9/2n + 9
Multipliers  8n2 + (9/2)nlogn + (29/2)n + 6 8n2 + 5nlogn + (39/2)n + 8 8n2 + 9/2nlogn + (37/2)n + 8
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Figure 6.  Unit-gate delay and area comparison of (a) adders, (b) subtractors, and (c) multipliers. 

 

V. EVALUATION AND COMPARISONS 
In this section we evaluate the proposed arithmetic units 

and compare them against the corresponding units that use a 
diminished-one arithmetic unit with zero handling along with 
a diminished-to-normal converter at the output. For the 
diminished-one arithmetic units we assume the architectures 
proposed in [15] [19] and [24], which are considered to be 

the current state of the art. For the diminished-to-normal 
converter we assume a controlled binary incrementer with a 
Sklansky parallel-prefix structure [15]. 

An area-delay comparison of the various converters can 
be based on the unit gate model [42]. The unit gate model 
assumes that each monotonic gate counts as one gate 
equivalent for both area and delay, while two-input XOR and 
XNOR gates count for two gate equivalents for both area and 
delay. 
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TABLE IV.  CMOS VLSI DELAY AND AREA RESULTS 

  Diminished-one + Converter Proposed 
n  Delay 

(ns) 
Area
(μm2)

Delay
(ns)

Area 
(μm2) 

Adders
4  0.809 762 0.555 707 
8  1.145 2022 0.693 1827 
16  1.568 5302 0.838 4677 
32  2.064 13260 1.042 11608 

Subtractors
4  0.867 793 0.557 746 
8  1.222 2085 0.797 1889 
16  1.633 6145 0.934 4897 
32  2.145 14673 1.125 11869 

Multipliers
4  1.285 2207 0.967 2093 
8  1.962 6232 1.418 5927 
16  2.848 19083 1.883 18911 
32  3.490 64288 2.346 62648 

 
 
Table III presents area and delay estimations of the 

proposed arithmetic units. The proposed adders and 
multipliers are based on the enhanced diminished-one adders 
presented in [40] while the proposed multipliers are based on 
the Booth-recoded multipliers presented in [24]. The D(k) 
function in the multipliers’ case denotes the number of levels 
that are required in a Dadda adder tree for reducing k partial 
products to two. Table III also presents the area and delay 
estimates of the corresponding diminished-one arithmetic 
units, according to [15] [19] and [24], as well as the 
estimates of the above mentioned diminished-one arithmetic 
units along with the diminished-to-normal converter. For the 
diminished-to-normal converter, a delay equal to logn+3 
equivalent gates and an area equal to (1/2)nlogn+2n+2 
equivalent gates are assumed. 

Fig. 6 graphically compares the unit-gate area and delay 
of the various arithmetic units for values of n up to 64. We 
observe that the delay of the proposed circuits is significantly 
smaller than that of the diminished-one circuits with the 
converter while it is very close to the delay of the 
diminished-one arithmetic units. Regarding the area, the 
proposed adders and subtractors are slightly larger than the 
other two circuits under comparison while all multipliers 
have approximately the same area. 

The unit-gate model estimations for area and delay can 
only be considered as indicative. To attain realistic results, 
arithmetic units for 4 values of n were described in HDL. 
After simulating the resulting descriptions, the circuits were 
synthesized and mapped to a 90 nm CMOS implementation 
technology [43]. The Synopsys Design Compiler tool [44] in 
the topographical mode was used for the synthesis and 
mapping of the circuits. In this mode, for achieving faster 
timing closure, the tool performs floorplanning in parallel 
with synthesis and mapping and the design is annotated with 

wiring lengths and fan-out and parasitic capacitances coming 
directly from the floorplan of the design and not from a wire 
load model. We assumed that each circuit’s input and output 
is driven by the output of a D flip flop and drives the input of 
a D flip flop of the same implementation library, 
respectively. A typical corner (1.2V, 25oC) was considered. 
Each circuit was recursively optimized for speed using a 
bottom-up approach. A final area recovery step was then 
applied. Table IV presents the attained area and delay results. 
The results validate that the proposed circuits are 
significantly faster than those where the diminished-to-
binary conversion is performed separately at the output of 
the diminished-one arithmetic unit.  

 

VI. CONCLUSIONS 
Novel modulo 2n+1 adders, subtractors and multipliers 

have been presented in this paper. The proposed circuits, 
apart from their arithmetic operation they also perform 
representation conversion, since they accept diminished-one 
operands at their inputs and produce their results in the 
normal representation, avoiding that way the need for a two-
step reverse conversion process. The proposed arithmetic 
units can be efficiently utilized in RNS-based systems with 
moduli of the 2n+1 forms where the arithmetic processing is 
based on the diminished-one representation while the 
residue-to-binary conversion assumes the normal 
representation. 
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