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ABSTRACT 
 
Double-LSB and signed-LSB have been recently proposed 
as efficient encodings for addition and multiplication in the 
modulo 2n+1 and 2n±1 channels respectively of a Residue 
Number System (RNS). In this paper we introduce reverse 
converters for two 4-moduli sets that adopt these encodings 
and analyze their efficiency. The theoretical and 
experimental results that are derived indicate that the area 
and delay costs of the reverse conversion in such RNSs are 
comparable to those that use the ordinary binary encoding 
and hence both the double-LSB and the signed-LSB 
encodings are well suited to RNSs. 
 

Index Terms—Residue Number Systems, residue-to-
binary conversion, reverse conversion, signed-LSB 
encoding, double-LSB encoding, modulo 2n±1 arithmetic. 
 

1. INTRODUCTION 
 
The Residue Number System (RNS) is a carry-free number 
system frequently adopted in the implementation of digital 
signal processing (DSP) algorithms where mainly additions, 
subtractions and multiplications are required [1] [11].  

An RNS is characterized by a set {m1, m2, …, mp} of p 
moduli that are pair-wise relatively prime. An integer A, 
with 0 ≤ A < M, where M = m1×m2×…×mp, has a unique 
representation in the RNS given by the set of residues      
{a1, a2, …, ap}, where ai is the least non-negative remainder 
of the division of A by mi, with i = 1, …, p. An arithmetic 
operation ⊗ on two RNS operands A and B is defined as 
Z=A⊗B ↔ (z1, …, zp) = (a1, …, ap) ⊗ (b1, …, bp), where 

imiii baz ⊗= is the residue of ai⊗bi taken modulo mi. This 

means that all arithmetic operations are performed on 
smaller residues instead of large operands, while also being 
carried out in parallel in separate arithmetic units known as 
channels. Furthermore, no carry propagation exists between 
the channels of an RNS, thereby high-speed parallel 
arithmetic processing is possible.  

RNSs built on moduli of the 2n±1 forms have received 
significant attention, mainly due to the efficient architectures 
that have been proposed for the design of the respective 
arithmetic units [3] [10]. A moduli set that has been 
thoroughly examined in the past is the 3-moduli set          
{2n-1, 2n, 2n+1} which has a dynamic range approximately 
equal to 3n bits. However, in order to increase the 
parallelism and hence the speed of the arithmetic processing 
as well as the dynamic range, moduli sets with more than 3 
moduli and dynamic ranges larger than 3n bits have been 
proposed in the last few years for contemporary digital 
signal processing applications [10].  

In every RNS, the operands must be converted from 
their binary representations to their corresponding residues 
and vice versa. While forward conversion is usually a simple 
process, the reverse (residue-to-binary) conversion is more 
complex and must be efficiently realized so as to prevent 
performance degradation of the overall RNS. An extensive 
amount of research has been done on the design of efficient 
RNS reverse converters for various moduli sets [2] [9]    
[14-16].  

Almost all RNSs use a modulo of the 2n+1 form. Every 
operand in this modulo requires n+1 bits for its encoding 
while 2n-1 combinations of them are not used. Leibowitz [8] 
introduced the diminished-one encoding for modulo 2n+1 
operands, in which each operand is represented decreased by 
one compared to its normal binary encoding. All arithmetic 
operations are separately considered for zero operands and 
results of arithmetic units. The diminished-one encoding has 
the advantage that the computations in the modulo 2n+1 
channel are restricted to n bits. However, special circuitry 
for zero operand handling is required and 
decrementers/incrementers have to be used in the 
forward/reverse conversion. In order to overcome these 
deficiencies, alternative encodings have been explored in the 
last few years for the modulo 2n+1 channel along with 
efficient arithmetic units (adders/multipliers). The double-
LSB [4] [6] and the signed-LSB [5] encodings are such 
examples. 
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In this paper we examine the reverse conversion in 
RNSs that utilize the double-LSB or signed-LSB encodings. 
Although some initial remarks have been made in [4] [5] on 
this subject, no thorough analysis has been reported. We 
consider two 4-moduli sets, (a) the {2n-1, 2n, 2n+1, 22n+1} 
set which has a dynamic range approximately equal to 5n 
bits and (b) the {2n-1, 22n, 2n+1, 22n+1} set which has a 
dynamic range approximately equal to 6n bits, and we 
formally introduce efficient residue-to-binary converters for 
them according to the New CRT I theorem [14]. These 
moduli sets provide high dynamic ranges and are therefore 
suitable for demanding DSP applications. The converters 
evaluation reveals that their costs, in terms of area and delay, 
are comparable to those of the corresponding converters for 
the binary encoding. Hence, the double-LSB and signed-
LSB encodings are well suited to RNSs. 

The remaining of the paper is organized as follows. The 
next section briefly reviews the double-LSB and signed-LSB 
encodings and presents some properties that are useful in the 
reverse conversion. Section 3 introduces the converters for 
the two moduli sets while Section 4 compares the converters 
for the two above-mentioned encodings against the 
corresponding converters for the binary encoding. 
 

2. PRELIMINARIES 
 
In this section, we firstly review the double-LSB and the 
signed-LSB encodings and then present some useful 
properties of theirs. 
 
Definition 1 (double-LSB encoding) [4]: A double-LSB 
encoded number X consists of a k-bit binary number 
accompanied by an extra bit in the least significant position.  
 

In the following, we denote a double-LSB encoded 

number X as 
0

01

X
xx

X k −= , where X0 denotes the extra 

bit in the least significant position. The double-LSB 
encoding can cover all numbers in the [0, 2k] range and 
hence can be effectively used for encoding the operands in a 
modulo 2k+1 channel of an RNS. 

 
Definition 2 (negabit): A negabit is a two-valued digit with a 
lower value equal to –1 and an upper value equal to 0. A 
negabit uses bias encoding, that is, its lower value is 
encoded in binary with logical 0 and its upper value is 
encoded in binary with logical 1. 

 
Definition 3 (signed-LSB encoding) [5]: A signed-LSB 
encoded number X consists of a k-bit binary number 
accompanied by a negabit in the least significant position.  
 

In the following, we denote a signed-LSB encoded 

number X as 
0

01

X
xx

X k −= , where X0 in this case denotes 

the negabit in the least significant position. The signed-LSB 
encoding covers all numbers in the [–1, 2k–1] range and 
hence can be effectively used in a modulo 2k+1 channel of 
an RNS by representing the 2k value as –1, which is 
congruent to 

12
2

+k

k . The signed-LSB encoding can also be 

adopted in the modulo 2k-1 channel [5]. 
 
We now present some properties of the binary, the 

double-LSB and the signed-LSB encodings that are useful 
for the reverse conversion process. 
 
Property 1: Assume a bit z. For every k > i ≥ 0, it holds that 

1212
22

−−

+ = kk

iki zz . 

Proof:  

121212
22)12(22
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iikiki zzzz  
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Property 1 implies that all bits with weights greater than or 
equal to 2k can be considered as having weights less than 2k. 
 
Property 2: Every negabit can be treated equivalently as a 
bit provided that a correction term equal to –1 is considered. 
Proof:  
The proof is straightforward since –1 = 0–1 and 0 = 1–1. 

■ 
 
Property 2 implies that the negabit which exists in the 
signed-LSB encoding can be treated as a bit. 
 
Property 3: Assume a k-bit unsigned binary number      
X=xk-1…x0. If we denote as X  its bit-wise complement, then 
it holds that )12( −−=− kXX . 
Proof:  
Since for every bit z it holds that 1−=− zz , we have that:  
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Property 4: Assume a k-bit double-LSB encoded number 

0

01

X
xx

X k −= . If we denote as X  the number that results 

from inverting the value of every bit of X, that is, 

0

01

X
xx

X k −= , then it holds that kXX 2−=− . 

Proof:  
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Property 5: Assume a k-bit signed-LSB encoded number 

0

01

X
xx

X k −= . If we denote as X  the number that results 

from inverting the value of every bit of X, that is, 

0

01

X
xx

X k −= , then it holds that )12( −−=− kXX . 

Proof:  
According to Property 2, we can treat the negabit in the least 
significant position as a bit as long as we add –1. Hence:  
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Properties 3-5 imply that the negation of a binary encoded, a 
double-LSB encoded and a signed-LSB encoded number can 
be accomplished by inverting every bit of the number, 
treating the negabit in the latter case as bit and considering a 
constant correction term. 

 
3. RESIDUE-TO-BINARY CONVERTERS 

 
Consider an RNS with the p-moduli set {m1, m2, …, mp} and 
a number X∈[0, m1×m2×…×mp). X can be uniquely 
represented in RNS as {x1, x2, …, xp}, where 

1
1 m

Xx = , 

2
2 m

Xx = , …,  
pmp Xx = . 

The New CRT-I theorem [14] states that, given the 
residues {x1, x2, …, xp}, the binary number X can be 
computed as: 

pmmmpppp xxmmmk
xxmmkxxmkx

X



21

)(
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2321212111
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or equivalently [16] as: 

pmmpppp xxmmk
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mxX



2
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where:  
 ,1

2
11 =

pmm
mk


 ,1

3
212 =

pmm
mmk


 …, 

 11211 =−−
pmpp mmmk  . 

In the following, we utilize the New CRT-I theorem in 
order to derive reverse converters for two different moduli 
sets, that is, the {2n-1, 2n, 2n+1, 22n+1} and the {2n-1, 22n, 
2n+1, 22n+1} 4-moduli sets which have high dynamic ranges 
of approximately 5n and 6n bits, respectively. 

 
3.1 Reverse Converter for the {2n-1, 2n, 2n+1, 22n+1} RNS 
 
Consider the 4-moduli {2n-1, 2n, 2n+1, 22n+1} RNS and a 
5n-bit number X∈[0, 25n-2n). X can be uniquely represented 
in this RNS by {x1, x2, x3, x4}, where 

121 −
= nXx , 

nXx
22 = , 

123 +
= nXx  and 

124 2 +
= nXx . Obviously, x4 is 

wider than the other three residues. According to the New 
CRT-I theorem, X can be computed from {x1, x2, x3, x4} as 
[12]:  

1243212 42
−

++++= nTTTTxX n  
where  

121
22

1 4)12)(12(2
−

− ++= nxT nnn ,  

122
3

2 42
−

−= nxT n ,   

123
2222

3 4)22)(12(
−

−− −+= nxT nnn  , and 

124
113

4 4)22(
−

−− −= nxT nn  .  

Hence, X can be reconstructed by concatenating the n 
bits of x2 with the 4n bits derived by the sum of the Ti terms 
taken modulo 24n-1. 

Assume two different cases: (a) an RNS that uses the 
double-LSB encoding for the modulo 2n+1 and 22n+1 
channels, that is, x3 and x4 are double-LSB encoded, and (b) 
an RNS that uses the signed-LSB encoding for the modulo 
2n-1, 2n+1 and 22n+1 channels, that is, x1, x3 and x4 are 
signed-LSB encoded. The derivation of each Ti term for 
each of the two different RNS cases results from the 
Properties 1-5 given in the previous section. For example, 
when n=4, the binary vector along with the correction term 
of each Ti term are shown in Fig. 1 (the shaded extra bits in 
the T1 term exist only in the signed-LSB RNS case). 
Notation xi,j is used to indicate the j-th bit of residue xi. The 
closed forms that are given for the correction terms hold for 
every value of n. We can unify all required corrections for 
the Ti terms into a single 4n-bit correction term C equal to 

12

223
4122
−

−−
− −−= n

nn
LSBdC and 

12

223
41223
−

−−
− −−⋅−= n

nn
LSBsC  

in the cases of the double-LSB-based and signed-LSB-based 
RNS, respectively. When n=4, 1019=−LSBdC  and 

62458=−LSBsC .  
A Dadda reduction tree can be used to compress the bits 

of Fig. 1 in two 4n-bit vectors. Then, a parallel modulo 24n-1 
adder can derive the 4n most significant bits of X. A block 
diagram of the proposed architecture is shown in Fig. 3(a). 
The constant bits of the correction term can be utilized for 
simplifying the implementation of the reverse converter.

  
3.2 Reverse Converter for the {2n-1, 22n, 2n+1, 22n+1} RNS 
 
Consider an RNS with the 4-moduli set {2n-1, 22n, 2n+1, 
22n+1} and a 6n-bit number X∈[0, 26n-22n). X can be 
uniquely represented in this RNS by {x1, x2, x3, x4}, where 

121 −
= nXx , nXx 222 = , 

123 +
= nXx  and 

124 2 +
= nXx . 

Obviously, x2 and x4 are wider than the other two residues. 
According to the New CRT-I theorem, X can be computed 
from {x1, x2, x3, x4} as [9]: 

124321
2

2 42
−

++++= nTTTTxX n  
where  
 



TERM  BINARY VECTOR  CORRECTION  CORRECTION 
 215 214 213 212 211 210 29 28 27 26 25 24 23 22 21 20  double-LSB  signed-LSB 

T1 
 1,1x  

0,1x  
3,1x  

2,1x  
1,1x  

0,1x  
3,1x  

2,1x  
1,1x  

0,1x  
3,1x  

2,1x  
1,1x  

0,1x  
3,1x  

2,1x   
0 

 
12

232
4)1222(2
−

− +++− n

nnnn  
  

0,1X     
0,1X     

0,1X     
0,1X      

T2  3,2x  
2,2x  

1,2x  
0,2x               

12

3
412
−

− n
n   

12

3
412
−

− n
n  

T3 
 1,3x  

0,3x  
3,3x  

2,3x  
1,3x  

0,3x  
3,3x  

2,3x  
1,3x  

0,3x  
3,3x  

2,3x  
1,3x  

0,3x  
3,3x  

2,3x   
12

223
4)12(2
−

− +− n

nn   
12

222
4)122)(12(2
−

− +−+− n

nnnn  
  

0,3X     
0,3X     

0,3X     
0,3X      

T4 
 4,4x  

3,4x  
2,4x  

1,4x  
0,4x  

7,4x  
6,4x  

5,4x  
4,4x  

3,4x  
2,4x  

1,4x  
0,4x  

7,4x  
6,4x  

5,4x   
12

13
42
−

−− n
n   

12

13
422
−

−+− n
nn  

     
0,4X         

0,4X       

C  c15 c14 c13 c12 c11 c10 c9 c8 c7 c6 c5 c4 c3 c2 c1 c0  
12

223
4122
−

−− −− n

nn   
12

223
41223
−

−− −−⋅− n

nn  
 

Fig. 1.  Binary vectors and correction terms for the {2n-1, 2n, 2n+1, 22n+1} residue-to-binary converters. 
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Fig. 2.  Binary vectors and correction terms for the {2n-1, 22n, 2n+1, 22n+1} residue-to-binary converters. 
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Hence, X can be reconstructed by concatenating the 2n 
bits of x2 with the 4n bits derived by the sum of the Ti terms 
taken modulo 24n-1. Assuming the same RNS cases as in the 
previous moduli set, the derivation of each Ti term for each 
of the two different RNS cases results from Properties 1-5. 
For example, when n=4, the binary vector along with the 
correction term of each Ti term are shown in Fig. 2 (the 
shaded extra bits in the T1 term exist only in the signed-LSB 
RNS case). Unifying all required corrections for the Ti terms 
into a single 4n-bit correction term C, we have for the two 
RNS cases that 

12

2224
4122
−

−−
− −+−= n

nn
LSBdC  and 

12

2224
41232
−

−−
− −⋅−−= n

nn
LSBsC . When n=4, 

49214=−LSBdC  and 48958=−LSBsC .  
A Dadda reduction tree can be used in this moduli set as 

well to compress the bits of Fig. 2 in two 4n-bit vectors. 
Then, a parallel modulo 24n-1 adder can derive the 4n most 
significant bits of X. A block diagram of the proposed 
architecture is shown in Fig. 3(b). The constant bits of the 
correction term can be also utilized for simplifying the 
implementation of the reverse converter. 
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X
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Fig. 3.  The proposed converter architectures for the (a) {2n-1, 2n, 2n+1, 
22n+1} and (b) {2n-1, 22n, 2n+1, 22n+1} moduli sets. 



4. EVALUATION AND COMPARISONS 
 
At first we evaluate the area and the delay of the proposed 
residue-to-binary converters for the two moduli sets and the 
two different encodings under consideration. All converters 
utilize the same fast modulo 24n-1 adder which can follow 
any desired architecture as long as it provides a single 
representation of zero at its output.  

Regarding the delay of the Dadda reduction tree, the 
double-LSB-based converters for both moduli sets are based 
on a vector matrix with a maximum height equal to 6 (see 
Figs. 1-2). Since one of the 6 bits has a constant value and 
the vector matrix does not have the same number of bits in 
every column, the Dadda reduction tree can be designed to 
have a delay equal to that of 1 half adder (HA) and 2 full 
adders (FAs). The vector matrix of the signed-LSB-based 
converters has a maximum height equal to 7. However, since 
one of the 7 bits has a constant value and its neighboring 
columns have fewer bits, the maximum height can be 
reduced at no cost to 6 and hence the delay of the Dadda 
reduction tree is equal to the delay of 3 FAs.  

Regarding the area of the Dadda reduction tree, the 
vector matrix of the double-LSB-based converters for the 
{2n-1, 2n, 2n+1, 22n+1} moduli set consists of 13n+6 bits and 
4n constant bits while the vector matrix of the double-LSB-
based converters for the {2n-1, 22n, 2n+1, 22n+1} moduli set 
consists of 14n+6 bits and 4n constant bits. Hence, in order 
to be reduced to the 8n bits that will be fed to the modulo 
24n-1 adder, 5n+6 FAs and 4n HAs or simplified FAs (that 
is, full adders with one input connected to logic 1) or 6n+6 
FAs and 4n HAs or simplified FAs are required for the two 
moduli set cases, respectively. The corresponding converters 
for the signed-LSB encoding have 4 more bits in each 
modulo case and therefore require 4 additional FAs. 

Table I summarizes the area and delay requirements of 
the reverse converters, in equivalent gates, according to the 
unit-gate model [13]. We consider all three different 
encodings, that is, the binary, the double-LSB and the 

signed-LSB one. For completeness, besides the two 4-
moduli sets of Section 3, we also consider the 3-moduli set 
{2n-1, 2n, 2n+1} and the converters that were reported in [4] 
and [5]. For the binary case, the architectures of [2] [9] and 
[15] are considered for the three moduli sets, which are the 
currently most efficient ones. In all converters, for the 
modulo 22n-1 or modulo 24n-1 adders we assume the parallel-
prefix-based architecture of [7] along with 2n or 4n NOR 
gates at the output for achieving a single zero representation. 

To also attain more realistic area and delay results, the 
above-mentioned converters were described in HDL for 
three values of n (4, 8 and 16). After validating the correct 
operation of the converters by simulation, each design was 
synthesized and mapped to a 90nm CMOS standard cell 
library, assuming typical process parameters. Table II 
presents the attained area and delay results. 

Considering the examined 4-moduli sets, the delay of 
the proposed converters for the signed-LSB encoding is 
practically equal to that required by the binary-encoded 
converters while the delay of the double-LSB based 
converters is a little smaller. However, in the 3-moduli set 
case, the converters for the double-LSB and signed-LSB 
encodings are slower than the converters for the binary 
encoding, due to the high efficiency of the converters 
proposed in [15]. Furthermore, the area of the proposed 
converters in the {2n-1, 2n, 2n+1, 22n+1} 4-moduli set, is 
smaller than that required by the binary-encoded reverse 
converters. This is due to the fact that the binary-encoded 
converters have more bits in their vector matrices. In the 
other two moduli set cases, the area of the converters is 
practically the same. 

Taking into consideration that the area and delay costs 
of the forward conversion of the double-LSB and signed-
LSB encodings are also practically equal to the 
corresponding costs of the binary encoding [4] [5], we can 
conclude that both the double-LSB and the signed-LSB 
encodings are well suited to RNSs. 

 
TABLE I 

UNIT-GATE AREA AND DELAY ESTIMATIONS OF THE VARIOUS CONVERTERS (IN EQUIVALENT GATES) 
 

Converter         Binary        double-LSB              signed-LSB 
 Delay Area Delay Area Delay Area 

3-Moduli Set {2n–1, 2n, 2n+1} 
OR gates 1 n – – – – 
Dadda reduction tree 4 14n 8 13n+14 10 13n+28 
Modulo 22n–1 adder 2logn+6 6nlogn+16n 2logn+6 6nlogn+16n 2logn+6 6nlogn+16n 
Total 2logn+11 6nlogn+31n 2logn+14 6nlogn+29n+14 2logn+16 6nlogn+29n+28 
4-Moduli Set {2n–1, 2n, 2n+1, 22n+1} 
Dadda reduction tree 12 67n+39 10 47n+42 12 47n+70 
Modulo 24n–1 adder 2logn+8 12nlogn+44n 2logn+8 12nlogn+44n 2logn+8 12nlogn+44n 
Total 2logn+20 12nlogn+111n+39 2logn+18 12nlogn+91n+42 2logn+20 12nlogn+91n+70 
4-Moduli Set {2n–1, 22n, 2n+1, 22n+1} 
Dadda reduction tree 12 60n+24 10 54n+42 12 54n+70 
Modulo 24n–1 adder 2logn+8 12nlogn+44n 2logn+8 12nlogn+44n 2logn+8 12nlogn+44n 
Total 2logn+20 12nlogn+104n+24 2logn+18 12nlogn+98n+42 2logn+20 12nlogn+98n+70 



TABLE II 
CMOS VLSI AREA AND DELAY RESULTS OF THE VARIOUS CONVERTERS 

 

Converter         Binary        double-LSB              signed-LSB 
n Delay 

 (ns)     
Area   

(μm2) 
Delay  

(ns) 
Area  

(μm2) 
Delay  

(ns) 
Area  

(μm2) 
3-Moduli Set {2n–1, 2n, 2n+1} 

4 0.37 2434 0.50 2441 0.55 2614 
8 0.44 5584 0.57 5593 0.62 5631 
16 0.52 12253 0.64 12118 0.69 12290 

4-Moduli Set {2n–1, 2n, 2n+1, 22n+1} 
4 0.67 7640 0.63 7013 0.68 7443 
8 0.74 15919 0.70 15272 0.73 15701 
16 0.84 34821 0.78 33330 0.81 33483 

4-Moduli Set {2n–1, 22n, 2n+1, 22n+1} 
4 0.64 7302 0.66 7432 0.65 8057 
8 0.71 15581 0.71 16154 0.72 16771 
16 0.79 33247 0.80 34531 0.82 35233 

 
5. CONCLUSIONS 

 
In the last few years, two novel encodings, the double-LSB 
and the signed-LSB, along with efficient arithmetic units 
(adders and multipliers) for them have been proposed for the 
modulo 2n+1 or 2n±1 channels of an RNS. We have 
introduced efficient reverse converters for RNSs that utilize 
such encodings in their channels. The {2n-1, 2n, 2n+1, 22n+1} 
and the {2n-1, 22n, 2n+1, 22n+1} 4-moduli sets have been 
considered. The analysis of their area and delay using both 
the unit-gate theoretical model as well as implementations in 
full static CMOS has shown that the converters costs in 
RNSs that use the double-LSB or the signed-LSB encodings 
are comparable to those in RNSs that use the binary 
encoding. Hence, both encodings can be efficiently utilized 
in RNSs. 
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