
Area-Time Efficient Multi-Moduli Adder Design
H. T. Vergos

Department of Computer Engineering and
Informatics, University of Patras,

26500 Greece
Email:vergos@ceid.upatras.gr

D. Bakalis
Department of Physics,

University of Patras,
26500 Greece

Email:bakalis@physics.upatras.gr

Abstract—Multi-moduli architectures, that is, architectures
that can deal with more than one modulo cases, are very useful
for reconfigurable digital processors and fault-tolerant systems
that are based on the Residue Number System (RNS). Two
novel architectures are proposed for multi-moduli adders that
support the most common moduli cases in RNS channels, that
is, modulo 2n − 1, 2n and 2n + 1. The proposed architectures
use parallel prefix carry computation units composed of log2 n
levels. The experimental results show that the resulting adders
are significantly faster and / or area efficient than the earlier
proposals.

Index Terms—Multi-moduli architectures, residue number sys-
tem, modulo 2n±1 arithmetic, parallel prefix carry computation

I. INTRODUCTION

The Residue Number System (RNS) [1], [2] is a number
system commonly adopted for speeding up computations in
digital signal processing [3], [4], [5], [6], cryptography [7]
and telecommunication applications [8], [9] and for fault-
tolerant computing [10], [11], [12]. A non-positional RNS is
defined by a set of L moduli, suppose {m1, . . . ,mL} that
are pair-wise relatively prime. Let |A|M denote the modulo
M residue of an integer A, that is, the least non-negative
remainder of the division of A by M . A has a unique
representation in the RNS, given by the set {a1, . . . , aL} of
residues, where ai = |A|mi . An operation ⋄ over an RNS is
defined as (z1, . . . , zL) = (a1, . . . , aL) ⋄ (b1, . . . , bL), where
zi = |ai ⋄bi|mi . The computation of zi only depends on ai, bi,
and mi, implying that all zis can be computed in parallel, each
in a separate arithmetic unit often called a channel. Since
all channels operate in parallel and each deals with narrow
residues instead of wide numbers, significant speedup over
the binary may be achieved.

RNS channels of the 2n, 2n − 1 or 2n + 1 moduli forms
have received significant attention. This is because the required
circuits for modulo 2n can be straightforwardly derived from
the corresponding integer circuits by limiting the result to
n bits, while arithmetic circuits have been proposed for the
2n ± 1 moduli that can operate as fast as the integer ones for
the same operand widths. It is therefore no surprise that the
three-moduli set {2n − 1, 2n, 2n + 1} is the most commonly
used, given apart from the fast implementations of the channel
circuits, fast converters between the residue and the binary
representation. In this set of moduli, the 2n+1 channel has to
deal with operands one bit wider than the other two, leading

to a performance bottleneck. To avoid this, and given that in
the case of a zero operand the result can be derived straight-
forwardly, [13] introduced the diminished-1 representation. In
the diminished-1 representation each number is represented
decreased by one compared to its normal representation and
all arithmetic operations are inhibited for a zero operand. The
diminished-1 representation has the advantage that it requires
only n bits, allowing to better equalize the delay of the three
channels.

Reconfigurable computing for RNS-based systems has re-
cently gained a significant interest. Multi-moduli architec-
tures [14], that is, architectures for arithmetic circuits that
support more than one modulo cases are very useful building
blocks since they can be exploited for hardware reuse and offer
substantial area savings. Multi-moduli architectures can be
applied in reconfigurable RNS-based digital signal processors
for providing flexibility and for easing the customization of
the desired dynamic range and in fault-tolerant RNS-based
systems for reducing the hardware costs of the redundant RNS
channels. To this end, several reconfigurable multi-moduli
architectures for the {2n − 1, 2n, 2n + 1} moduli set have
been presented during the last few years. Reconfigurable multi-
operand modulo 2n ± 1 adders have been presented in [15].
Furthermore, [16] has presented combined multiplication/sum-
of-squares modulo 2n ± 1 units. Finally, [17], [18] have
presented reconfigurable multi-moduli multipliers and squarers
for the {2n − 1, 2n, 2n + 1}) moduli set, respectively.

In this paper we introduce two novel architectures for the
design of multi-modulo adders, that support the 2n−1, 2n and
2n+1 modulo cases, assuming the diminished-1 representation
for the latter. The multi-modulus adder is a critical subdesign
in multi-moduli arithmetic components since it is used as
the last stage of multipliers and squarers. The remaining
of the paper is organized as follows. Section II presents
some background issues on parallel prefix addition, on sparse
parallel prefix carry computation units and on modulo 2n ± 1
addition. It also briefly reviews the multi-modulus adder used
in [17], [18], which forms the basis for our comparisons. The
proposed multi-moduli adder architectures are then introduced
in Section III and evaluated by VLSI implementations in
Section IV. Our conclusions are presented in the last Section.

ISBN 978-84-693-7393-4 DCIS 2010 Proceedings 295

01234567

s7 s0

cout

01234567

s7 s0

cout

(a) (b)

Fig. 1. Examples of 8-bit parallel prefix structures for integer adders.

(g, p) (g, p)

(gn, pn)

(g, p)

(gn, pn)

(g, p)ai bi

hi gi pi

ai bi

hi gi pi

hi ci-1

si

hi ci-1

si

Fig. 2. Logic-level implementation of the basic cells.

II. BACKGROUND

A. Parallel prefix carry computation

Every adder can be considered as a three-stage circuit.
Assuming that A = an−1an−2 . . . a0 and B = bn−1bn−2 . . . b0
represent the two addition operands, the preprocessing stage
computes the carry-generate bits gi and the half-sum bits hi,
for every i, 0 ≤ i ≤ n− 1, as gi = ai · bi and hi = ai ⊕ bi. In
an inclusive-OR adder, the preprocessing stage also computes
the carry-propagate bits pi, as pi = ai+ bi, where ·, ⊕ and +
in the above, denote logical AND, exclusive-OR and inclusive
OR, respectively. In an exclusive-OR adder the half sum bits
are also used as carry-propagate bits (pi = hi). This makes
an exclusive-OR adder somewhat smaller and slower than an
inclusive-OR one. The second stage of the adder, hereafter
called the carry computation unit, computes the carry signals
ci, for 0 ≤ i ≤ n − 1 using the carry generate and carry
propagate bits. Finally, the third stage computes the sum bits
according to si = hi ⊕ ci−1.

Carry computation was transformed into a parallel prefix
problem by the introduction of the ◦ operator [19], which
associates pairs of generate and propagate signals according
to (g, p)◦(g′, p′) = (g+p ·g′, p ·p′). In a series of associations
of consecutive generate/propagate pairs (g, p) the notation
(gk:j , pk:j), with k > j, is used for the group generate /
propagate term produced out of bits k, k − 1, . . . , j, that is:

(gk:j , pk:j) = (gk, pk) ◦ (gk−1, pk−1) ◦ . . . ◦ (gj , pj).

Since every carry ci in an integer adder is equal to gi:0, a
number of distinct algorithms have been introduced for com-
puting all the carries using only ◦ operators. These algorithms
are most often represented by acyclic directed graphs in which
the required prefix operators constitute the nodes. Figures 1(a)
and (b) present the most well-known algorithms proposed by
Kogge-Stone [20] and Ladner-Fischer [21], respectively, when
used for the design of an 8-bit adder, while figure 2 depicts

4b-CS

15 13 11 9 7 5 3 1 014 12 10 8 6 4 2

4b-CS

31 29 27 25 23 21 19 17 1630 28 26 24 22 20 18

s31s30s29s28 s3s2 s1s0

4b-CS4b-CS4b-CS4b-CSA4b-CS4b-CS

6 5 4 2 1 0

(a)

1 0 1 0

ci-1

gi

hi

si

pi

hi+1

si+1

gi+1 pi+1

hi+2

si+2

1 0

gi+2 pi+2

hi+3

si+3

(b)

Fig. 3. (a) Sparse-4 parallel prefix structure for a 32-bit integer adder and
(b) logic level implementation of the CSB.

the logic-level implementation of the basic cells used in an
inclusive-OR parallel prefix adder.

For large wordlengths, sparse parallel prefix adders are
preferred, since they offer significantly reduced wiring and
area without sacrificing delay. Their design relies on the use
of a sparse parallel prefix carry computation unit and carry-
select blocks (CSBs). Only the carries at the boundaries of
the carry-select blocks are computed. A 32-bit adder with 4-
bit sparseness is shown in figure 3(a). The carry select block
computes a set of sum bits for each of the two possible values
of the incoming carry. A logic-level implementation of a 4-
bit carry-select block is shown in figure 3(b). The shaded OR
is not required in inclusive-OR adders in which the input of
the XOR gate can be driven by pi. Since the two candidate
sum bits are computed earlier than the selecting carry, no extra
delay is imposed by the use of the carry-select block.

B. Modulo 2n ± 1 addition basics

It is very well known that a modulo 2n − 1 adder can
be implemented using an integer adder and by incrementing
the sum when the carry output is 1, or equivalently, if we
connect the carry output back to the carry input. Such a direct
connection however may lead to oscillations and therefore
to a poor design. [22] attacked this problem by using an
extra level in the parallel prefix carry computation unit of an
integer adder which is used to account for the carry output
of the integer addition. On the other hand, [23] proposed to
account for the carry output within the existing prefix levels by
performing recirculation of the reentering carry. Figures 4(a)
and (b) present these two alternatives assuming a Ladner-
Fischer parallel prefix carry computation unit for [22]. The

ISBN 978-84-693-7393-4 DCIS 2010 Proceedings 296

5 4 3 2 1 07 6

s0s7

5 4 3 2 1 07 6

s0s7

(a) (b)

Fig. 4. The proposals of [22] (a) and [23] (b) for a modulo 28 − 1 adder.

proposal of [23] has been shown to lead to superior adders in
terms of delay and area than that of [22].

Similarly, a diminished-1 modulo 2n + 1 adder can be
implemented using an integer adder and by incrementing the
sum when the carry output is zero, or equivalently, if we
connect the inverted carry output back to the carry input [22],
[24]. Therefore, one needs to add just an inverter at the
architecture of figure 4(a) to attain a diminished-1 adder.
In [24] a new technique was proposed for recirculating the
inverted carry output within the existing prefix levels of the
carry computation unit and thus for computing the carries of
the diminished-1 addition within log2 n prefix levels.

Moreover, [23], [24] have shown that when written in
parallel prefix form, the equations that define the carries of
the modulo 2n ± 1 carries computation, have a cyclic form
and in contrast to integer addition, the number of generate
and propagate pairs that have to be associated for each carry is
equal to n. This means that a parallel prefix carry computation
unit of a modulo 2n ± 1 adder has significantly increased
area complexity than that of a corresponding integer adder and
therefore, a sparse design methodology may be preferred even
for narrow operands. Sparse parallel prefix modulo 2n−1 and
modulo 2n + 1 adders have been presented in [25] and [26],
respectively, in which recirculation of the carry output (normal
and inverted respectively) is performed within the existing
prefix levels and the same carry select block with that of the
integer adders is used.

More interestingly though, [26] has shown that the carries of
a diminished-1 adder, suppose c+i , are closely related to those
of a modulo 2n − 1 adder suppose c−i , with −1 ≤ i < n− 1.
Specifically, it holds that c+i = c−i ⊕ Di:0, where Di:0 =
hi · hi−1 · . . . h0 and D−1:0 = 1. Therefore, a diminished-
1 adder can be designed following any architecture already
proposed for a modulo 2n − 1 adder provided that the Di:0

are computed in parallel and are used in the final stage of the
adder for deriving the required diminished-1 carries.

C. Previous proposal

The only available multi-modulus adder in the open litera-
ture for the {2n, 2n − 1, 2n + 1} moduli set is the one used

15 14 13 12 11 10 9 5 4 3 2 1 08 7 6

s0s15

0

Fig. 5. Previous proposal for a multi-modulus 16-bit adder.

in [17], [18] for the design of multi-modulus multipliers and
squarers, respectively, which is shown in figure 5 for 16-bit
operands. It is based on the proposals of [22] and therefore
uses log2 n+1 prefix levels for computing the carries. A 3 to
1 multiplexer is further used to select the carry inserted at the
last level. Zero is selected for modulo 2n addition, the carry
output for modulo 2n − 1 and the inverted carry output for
diminished-1 modulo 2n + 1 addition. This architecture will
be used as a basis for our comparisons and will be denoted by
EAC-KS and EAC-LS in the following, when a Kogge-Stone
or a Ladner-Fischer prefix structure is used, respectively.

III. NOVEL MULTI-MODULUS ADDER ARCHITECTURES

Two novel multi-modulus adder architectures are introduced
in this section. They are based on the proposals of [23]
and [25] on the design of efficient modulo 2n − 1 adders,
respectively. The main idea behind them is to modify a modulo
2n − 1 adder in order to also provide the carries of a modulo
2n addition and to use the theory recently developed in [26]
for conditionally attaining the diminished-1 carries from the
modulo 2n − 1 ones before the last stage of the adder.

Both proposals use two function control signals, namely,
n/m and dim. When n/m and dim are zero a modulo 2n

sum is attained, whereas for n/m = 1, dim = 0 and n/m =
1, dim = 1 a modulo 2n − 1 and a diminished-1 modulo
2n+1 sum is produced. Irrespectively of the carry computation
prefix structure used, a Ladner-Fischer parallel prefix structure
is used in parallel for the Di:0 signals computation in both
architectures. Each node of the later is a simple two-input
AND gate. However, since both proposals use the exclusive-
OR carry propagate signal definition a significant amount of
AND gates between the carry generation logic and the logic
for the computation of the Di:0 signals, is shared.

Finally, since the Di:0 signals are expected to be de-
rived earlier than the carry signals, in both architectures the

ISBN 978-84-693-7393-4 DCIS 2010 Proceedings 297

15 14 13 12 11 10 9 5 4 3 2 1 08 7 6

s0s15

dimD1:0 D0:0D3:0 D2:0D5:0 D4:0D7:0 D6:0D9:0 D8:0D11:0 D10:0D13:0D12:0D14:0

h1

h0

n/m

g pg' p' n/m

gn pn

g
pg'

n/m

p'

gn pn

Fig. 6. Proposed FPP multi-modulus adder.

Di:0 signals are directly associated with the half-sum (or
equivalently with the carry propagate bits since we adopt
an exclusive-OR definition) bits and the carry is then logi-
cally XOR-ed with the result. That is, instead of computing
si = hi⊕ (ci−1 ⊕ (dim ·Di−1:0)) both architectures compute
si = (hi ⊕ (dim ·Di−1:0)) ⊕ ci−1, so that the late arriving
carries are moved as close to the output of the adder as
possible.

A. Proposed Parallel Prefix Multi-Modulus adders

Figure 6 presents the first proposed architecture for a 16-
bit multi-modulus adder, hereafter called FPP architecture.
It follows the parallel prefix structure proposed in [23]. All
prefix operators that accept a feedback carry generate signal
(indicated by the light grey shading in figure 6) are modified
in order to take into account the n/m signal. If this is asserted,
then the feedback carry is taken into account. Otherwise, it is
ignored, leading to a modulo 2n carry generation by the prefix
node. The implementation of the modified prefix operator
is also shown in figure 6. Compared to the normal prefix
operator, this requires a 3-input AND gate instead of a 2-
input one before the OR gate that produces the group carry
signal. In custom VLSI technologies the group carry signals
of both operators are implemented by AOI compound gates,
indicating that the area and time overhead imposed by the
modified operators, would be very small.

The following should be noted about the proposed FPP
architecture : (a) since the group propagate signals of the
modified operators are not needed in the following levels of
the adder in the case of modulo 2n addition, they do not need

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Modified CSBModified CSBModified CSBModified CSB

s0s1s2s3s4s5s6s7s8s9s10s11s12s13s14s15

g pg' p' n/m

gn pn

g
pg'

n/m

p'

gn pn

n/m

Fig. 7. Proposed SPP multi-modulus adder.

to be modified according to the value of the n/m signal and
(b) the AND gate at the least significant bit position ensures
a zero carry input for the modulo 2n addition case.

B. Proposed Sparse Parallel Prefix Multi-Modulus adders

Figure 7 presents the second proposed architecture for a 16-
bit multi-modulus adder, hereafter called SPP architecture. It
follows the sparse parallel prefix structure proposed in [25].
The prefix operators that accept a feedback carry generate
signal (indicated by the different shading in figure 7) are
modified in order to take into account the n/m signal. In
contrast to the FPP architecture both the group generate and
group propagate outputs need to be modified, since the later
will be used as inputs to the modified CSB at the final stage of
the adder. The required implementation of the modified prefix
operator is also shown in figure 7. Compared to the normal
prefix operator, this requires the same modifications as those
introduced above for the group generate term plus an extra
OR gate for the group carry propagate term. Although the
above modifications increase the area of the modified prefix
operator they do not increase further the logic levels; the
group propagate logic can be implemented in VLSI by an
OAI compound gate.

As mentioned earlier, the Di:0 signals are expected to be
computed earlier than the carry signals. Therefore, a good
design practice is to use them within the CSB logic before
the carries. Figure 8 presents the logic level implementation
of a modified CSB that achieves this. A 2-input AND gate
controlled by the dim and the D signals followed by an XOR
gate is added per sum bit for conditionally complementing
the half sum bits. The delay that these modifications add does
not reside on the critical path of the adder for sufficiently
large operand lengths and is hidden in the delay of the carry
computation logic.

ISBN 978-84-693-7393-4 DCIS 2010 Proceedings 298

TABLE I
EXPERIMENTAL RESULTS FOR DELAY OPTIMIZED ADDERS

EAC-KS EAC-LF FPP SPP
n Delay Area Delay Area Delay Area Delay Area
4 277 732 275 703 186 856 248 572
8 359 1613 360 1207 268 2016 325 1183

16 436 3964 433 2862 336 4872 401 2619
32 519 9044 516 6554 410 11123 476 4679
64 603 20886 601 13495 501 23853 592 12264

TABLE II
EXPERIMENTAL RESULTS FOR AREA OPTIMIZED ADDERS

EAC-KS EAC-LF FPP SPP
n Target Delay Delay Area Delay Area Delay Area Delay Area
4 277 277 732 275 534 276 456 276 368
8 360 359 1613 360 1207 358 1242 354 815
16 436 436 3964 436 2620 436 3285 436 1829
32 519 519 9044 519 5830 519 8373 519 3244
64 603 603 20886 603 12791 603 20086 602 8358

1 0 1 0

ci-1

gi

hi

si

pi

hi+1

si+1

gi+1 pi+1

hi+2

si+2

1 0

gi+2 pi+2

hi+3

si+3

Di+2:0

Di+1:0
Di:0

dim
Di-1:0

Fig. 8. Logic level implementation of the modified carry select block.

IV. COMPARISONS

In this section we compare the introduced FPP and SPP
multi-moduli adder architectures against the EAC-KS and
EAC-LF architectures used in [17], [18]. To this end, we
described in HDL the multi-moduli adders derived by each
architecture for n = 4, 8, 16, 32 and 64. Having validated
the correct operation of the HDL descriptions by simulation,
we synthesized each of them in a standard cell 90nm CMOS
technology.

Each netlist was firstly optimized targeting the maximum
operation frequency that can be achieved. The attained results
are listed in Table I. Delay results are expressed in ps, while
the area results in µm2. The attained results indicate that EAC-
KS and EAC-LF multi-moduli adders offer a similar execution
speed throughout the examined adder range. Although the
Kogge-Stone prefix structure offers a fan-out equal to 2 in
the upper log2 n prefix levels of the EAC-KS compared to n

2
offered by the Ladner-Fischer prefix structure in the EAC-
LF case, these gains are limited or offset by the increase
in the required prefix operators and their associated routing.
Moreover, the multiplexer output that in both cases has a
fan-out equal to n and therefore buffers need to be inserted
at the larger wordlengths. Both proposed architectures offer

significantly faster adder designs. The results of Table I
indicate that the FPP adders offer delay savings that range
from 16.6% up to 32.9%, while the SPP ones offer savings
that range from 1.5% up to 10.5%. These savings can be
explained by comparing figures 5, 6 and 7. It is obvious that
both proposed architectures remove a parallel prefix level from
the carry computation unit of the previous proposal and the
required 3 to 1 multiplexer. Both these subdesigns reside on
the critical path of the adder and therefore their removal leads
to large delay savings at narrow wordlengths, that decrease
as we move to wider ones. The FPP architecture leads to
faster designs than the SPP because the later one also requires
modifications of the group propagate signal. Stated otherwise,
the FPP adders offer the delay of the currently fastest reported
modulo 2n − 1 adders [23] increased by the time difference
between an XOR gate and an OR gate and log2 n times that
between an AOI gate with a 3-input AND over that with a
2-input AND. It should be noted that the required buffering
at the control signals n/m and dim in the proposed FPP and
SPP adder does not reside on the critical path and therefore
the maximum fan-out of the proposed FPP and SPP adders is
limited to 2 and to the length of the CSB, respectively.

For comparing the area efficiency of the different architec-
tures, the netlists were then optimized targeting the minimum
implementation that can offer an operating frequency set by the
worst delay of Table I in each wordlength case. The attained
results are listed in Table II. Considering the implementation
area, the EAC-LF adders are preferable over the EAC-KS ones.
The proposed SPP adders offer the smallest implementations
throughout the examined wordlength range. The savings of-
fered against the previous proposals of EAC-LF and EAC-KS
increase as we move to wider wordlengths up to 64.1%. This
can be attributed to the removal of a large number of prefix
operators apart from those of the reentering carry level, since
only the carries at the CSB boundaries need to be computed.
The removal of a prefix operator also implies the removal of

ISBN 978-84-693-7393-4 DCIS 2010 Proceedings 299

1600

2100

2600

3100

3600

4100

330 360 390 420 450 480 510 540 570 600

A
re

a
 (

μ
m

2
)

Delay (ps)

EAC-KS

EAC-LF

FPP

SPP

Fig. 9. Design space exploration for 16-bit multi-moduli adders.

at least 3 associated interconnections, leading to a significant
reduction in the required wiring tracks. It should be noted that
the addition of the Ladner-Fischer prefix structure of AND
gates for computing the Di:0 signals does not increase the
implementation area a lot since its AND gates are shared by
the prefix operators for computing the group propagate terms
and is further compensated by the removal of n OR gates,
since we adopt an exclusive-OR carry propagate definition.
Although the proposed FPP adders offer the ultimate speed
among the examined architectures, given that their structure
relies on that of [23] which augments a Kogge-Stone structure
by more operators to achieve reentering carry recirculation
within the existing prefix levels, they are only more area
efficient than the EAC-KS.

Figure 9 presents area-time curves for the examined multi-
moduli adder architectures, for n = 16. If a delay smaller
than 401ps is required then the proposed FPP architecture is
the only alternative. In all the rest cases, the proposed SPP
architecture should be preferred since it leads to the smallest
implementations.

V. CONCLUSIONS

Reconfigurable computing in RNS-based systems has
gained a significant interest during the last few years. Multi-
moduli architectures result in very useful building blocks since
they can be exploited for hardware reuse and area saving.

In this paper, two novel architectures for multi-moduli
adders have been proposed. Both support the most commonly
used moduli set, that is, the {2n − 1, 2n, 2n + 1} set. They
are based on modifying the parallel-prefix carry computation
unit of a modulo 2n − 1 adder so as to also produce the
modulo 2n carries. The diminished-1 modulo 2n + 1 carries
can be derived by the modulo 2n − 1 ones using the theory
recently developed in [26]. The proposed FPP adders are
the fastest proposed and offer delay savings of up to 32.9%
over the previous proposals used in [17], [18]. The proposed
SPP adders offer less delay savings than the FPP ones, but
cut down the implementation area by more than 30% in
every examined case. New multi-moduli architectures for other
arithmetic components are currently under investigation.

REFERENCES

[1] P. V. A. Mohan, Residue Number Systems : Algorithms and Architec-
tures. Springer-Verlag, 2002.

[2] A. Omondi and B. Premkumar, Residue Number Systems : Theory and
Implementations. Imperial College Press, 2007.

[3] R. Chaves and L. Sousa, “RDSP: A RISC DSP based on Residue
Number System,” in 6th Euromicro Symp. on Digital System Design,
2003, pp. 128–135.

[4] P. G. Fernandez and A. Lloris, “RNS-based Implementation of 8 × 8
point 2D-DCT over Field-Programmable Devices,” Electronics Letters,
vol. 39, no. 1, pp. 21–23, January 2003.

[5] Y. Liu and E. M.-K. Lai, “Moduli Set Selection and Cost Estimation
for RNS-Based FIR Filter and Filter Bank Design,” Design Automation
for Embedded Systems, vol. 9, no. 2, pp. 123–139, June 2004.

[6] G. Cardarilli et al., “Residue Number System for Low-Power DSP
Applications,” in Asilomar Conf. on Signals, Systems and Computers,
2007, pp. 1412–1416.

[7] J.-C. Bajard and L. Impert, “A Full RNS Implementation of RSA,” IEEE
Trans. Comput., vol. 53, no. 6, pp. 769–774, June 2004.

[8] U. Meyer-Bäse, A. Garcia, and F. Taylor, “Implementation of a Com-
munications Channelizer using FPGAs and RNS Arithmetic,” Journal of
VLSI Signal Processing, vol. 28, no. 1-2, pp. 115–128, May-June 2001.

[9] A. S. Madhukumar and F. Chin, “Enhanced Architecture for Residue
Number System-based CDMA for High-Rate Data Transmission,” IEEE
Trans. Wireless Commun., vol. 3, no. 5, pp. 1363–1368, May 2004.

[10] L. Impert et al., “Fault-Tolerant Computations over Replicated Finite
Rings,” IEEE Trans. Circuits Syst. I, vol. 50, no. 7, pp. 858–864, 2003.

[11] I. Steiner et al., “A Fault-Tolerant Modulus Replication Complex FIR
Filter,” in 16th Symp. on Application-Specific Systems, Architectures
and Processors, 2005, pp. 387–392.

[12] A. O’Donnel and C. Bleakley, “Area Efficient Fault Tolerant Convolu-
tion using PRNS with NTTs and WSCA,” Electronics Letters, vol. 44,
no. 10, pp. 648–649, 2008.

[13] L. M. Leibowitz, “A Simplified Binary Arithmetic for the Fermat
Number Transform,” IEEE Trans. Acoust., Speech, Signal Processing,
vol. 24, no. 5, pp. 356–359, October 1976.

[14] V. Paliouras and T. Stouraitis, “Multifunction Architectures for RNS
Processors,” IEEE Trans. Circuits Syst. II, vol. 46, no. 8, pp. 1041–
1054, 1999.

[15] C.-H. Chang et al., “A Configurable Dual Moduli Multi-Operand Mod-
ulo Adder,” in IEEE Int. Symp. Circuits and Systems, 2005, pp. 1630–
1633.

[16] D. Adamidis and H. T. Vergos, “RNS Multiplication / sum-of-squares,”
IET Proceedings - Computers and Digital Techniques, vol. 1, no. 1, pp.
38–48, January 2007.

[17] S. Menon and C. H. Chang, “A Reconfigurable Multi-Modulus Mod-
ulo Multiplier,” in IEEE Asia Pasific Conf. on Circuits and Systems,
December 2006, pp. 1168–1171.

[18] R. Muralidharan and C. H. Chang, “Fixed and Variable Multi-Modulus
Squarer Architectures for Triple Moduli Base of RNS,” in Proc. of the
IEEE Int. Symposium on Circuits and Systems, May 2009, pp. 441–444.

[19] R. P. Brent and H. T. Kung, “A Regular Layout for Parallel Adders,”
IEEE Trans. Comput., vol. 31, no. 3, pp. 260–264, 1982.

[20] P. M. Kogge and H. S. Stone, “A Parallel Algorithm for the Efficient
Solution of a General Class of Recurrence Equations,” IEEE Trans.
Comput., vol. 22, no. 8, pp. 786–792, August 1973.

[21] R. E. Ladner and M. J. Fischer, “Parallel Prefix Computation,” Journal
of The ACM, vol. 27, no. 4, pp. 831–838, 1980.

[22] R. Zimmerman, “Efficient VLSI Implementation of Modulo (2n ± 1)
Addition and Multiplication,” in Proc. of the 14th IEEE Symposium on
Computer Arithmetic, April 1999, pp. 158–167.

[23] L. Kalampoukas et al., “High-Speed Parallel-Prefix Modulo 2n − 1
Adders,” IEEE Trans. Comput., vol. 49, no. 7, pp. 673–680, 2000.

[24] H. T. Vergos, C. Efstathiou, and D. Nikolos, “Diminished-One Modulo
2n+1 Adder Design,” IEEE Trans. Comput., vol. 51, no. 12, pp. 1389–
1399, December 2002.

[25] G. Dimitrakopoulos et al., “New Architectures for Modulo 2n − 1
Adders,” in Proc. of the 12th IEEE International Conference on
Electronics, Circuits & Systems, December 2005.

[26] H. T. Vergos and G. Dimitrakopoulos, “On Modulo 2n + 1 Adder
Design,” submitted to IEEE Trans. Comput., February 2010.

ISBN 978-84-693-7393-4 DCIS 2010 Proceedings 300

