
Area-Efficient Multi-Moduli Squarers for RNS

D. Bakalis
Electronics Laboratory, Dept. of Physics

University of Patras
Patras, Greece

bakalis@physics.upatras.gr

H. T. Vergos
Dept. of Computer Engineering and Informatics

University of Patras
Patras, Greece

vergos@ceid.upatras.gr

Abstract—Multi-moduli architectures are very useful for
reconfigurable digital processors and fault-tolerant systems
that are based on the Residue Number System (RNS). In this
paper we propose two architectures for multi-moduli squaring
that support the most common moduli cases in RNS channels,
that is, 2n-1, 2n and 2n+1. The proposed architectures are based
on the modified Booth encoding of the input operand for
deriving the required partial products and on Dadda adder
trees for their addition. Experimental results show that the
proposed squarers offer significant savings in area compared
to previous proposals while a small improvement in delay is
achieved in most cases as well.

Keywords- Modulo arithmetic; residue number system;
modulo 2n±1; modulo squarers

I. INTRODUCTION
The Residue Number System (RNS) is a number system

commonly adopted for speeding up computations in digital
signal processing, cryptography and telecommunication
applications and for fault-tolerant computing [1] [2]. A non-
positional RNS is defined by a set of L moduli, suppose
{m1, …, mL} that are pair-wise relatively prime. Let

M
A

denote the modulo M residue of an integer A, that is, the least
non-negative remainder of the division of A by M. A has a
unique representation in the RNS, given by the set
{a1, …, aL} of residues, where

imi Aa = .

The three-moduli set {2n-1, 2n, 2n+1} is the most
commonly used in RNS, given apart from the fast
implementations of the arithmetic operations, fast converters
between the residue and the binary representation. In this
moduli set, the 2n+1 channel has to deal with operands one
bit wider than the other two, leading to a performance
bottleneck. The diminished-one representation was
introduced to face this problem [3]. In the diminished-one
representation each number is represented decreased by one
compared to its normal representation and all arithmetic
operations are inhibited for a zero operand. The diminished-
one representation has the advantage that it requires only n
bits, allowing to better equalize the delay of the three
channels.

Reconfigurable computing for RNS-based systems has
recently gained a significant interest. Multi-moduli
architectures [4], that is, architectures for arithmetic circuits
that support more than one modulo cases are very useful

building blocks since they can be exploited for hardware
reuse and offer substantial area savings. Multi-moduli
architectures can be applied in reconfigurable RNS-based
digital signal processors for providing flexibility and for
easing the customization of the desired dynamic range and in
fault-tolerant RNS-based systems for reducing the hardware
costs of the redundant RNS channels. To this end, several
reconfigurable multi-moduli architectures for the
{2n-1, 2n, 2n+1} moduli set have been presented recently
[5]-[8].

In this paper we present efficient multi-moduli squarers
for the modulo 2n-1, 2n and 2n+1 cases, assuming both the
normal and the diminished-one representation for the latter
case. The proposed architectures are based on the modified
Booth algorithm for generating the partial products and on
Dadda adder trees for their addition.

The remaining of the paper is organized as follows.
Section II presents the partial product matrices that are
required in the modulo squaring operation, for the various
modulo cases. Efficient multi-moduli squarer architectures
are introduced in Section III while section IV presents
experimental results. Section V concludes the paper.

II. BOOTH-ENCODED MODULO SQUARERS
Every modulo squarer requires the partial products

generation, their reduction in two summands and a final
addition for deriving the result. In this section we concentrate
on the partial products generation.

Let A = an-1…a0 be the n-bit input operand of a squarer.
For simplicity, we consider in the following that n is even
and use the n=8 case as an example. According to the radix-4
modified Booth encoding, we can rewrite A as

∑
−

=

=
12

0

22
n

i
i

i AA , where]2,2[)2(12212 +−∈++−= −+ iiii aaaA

and a-1=0. Thus, the square of A, A2, can be computed using
the Booth-encoded digits Ai as follows [9]:

∑ ∑∑
−

=

−

=

+
−

=

+=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

12

0

22

0

344
212

0

2 22
n

i

n

i
i

i
i

i
n

i
i PCAA (1)

where iii AAC ×= and ∑
−

+=

−− ×=
12

1

)1(22
n

ik
ki

ik
i AAP . The Ci

terms, 0≤i<n/2, are unsigned numbers that can be
represented by three bits since they assume only the values 0,
1 or 4. However, since the middle bit is always equal to 0,
there is no need to be included in the partial product matrix.

2010 13th Euromicro Conference on Digital System Design: Architectures, Methods and Tools

978-0-7695-4171-6/10 $26.00 © 2010 IEEE

DOI 10.1109/DSD.2010.25

408

On the other hand, the Pi terms, are signed two’s
complement numbers that can easily be derived using simple
circuits, such as those presented in [9]. Each Pi term,
0≤i<n/2-1, requires (n-1-2i) bits. Let Ci,j and Pi,j denote the
j-th bit of Ci and Pi, respectively. Let the most significant bit
of each Pi term also be denoted as Pi,MSB.

Let us now focus on the modulo squaring operation. We
consider the several moduli cases separately in the following.
(a) Modulo 2n-1

Relation (1) can be used in the modulo 2n-1 case as long
as we take into account that a-1=an-1 in the least significant
Booth-encoded digit [10]. For attaining an n-bit wide matrix,
we need to reposition all partial product bits with weights
greater than 2n-1 to the columns with weights less than or
equal to 2n-1. For a bit z, it holds that

1212
22

−−

+ = nn

iin zz ,

i ≥ 0. Hence, all Ci,j and Pi,j bits (except the Pi,MSB bits) with
weights greater than 2n-1 can be moved to columns with
weights less than or equal to 2n-1. The Pi,MSB bits however
need to be treated differently since they represent the sign of
a two’s complement Pi term and correspond to negative
values. It can be easily shown that

111112 ,0,1),22(
12

22

0
,

)12(
MSBMSBMSBn

n

i
MSBi

in PPPP
n

−
−

−

=

++ =−∑ .

Hence, we invert every Pi,MSB bit, move it in a column
with weight less than 2n-1 and also include some constant
correction bits in the remaining columns. Fig. 1(a) presents
the derived partial product matrix for the modulo 28-1 case.
It consists of 31 partial product bits, 8 of which have
constant values, and its maximum height among all columns
is equal to 5.
(b) Modulo 2n

Since it holds that 02
2

=+
n

inz , i≥0, for attaining an n-

bit wide matrix, we can simply ignore all Ci,j and Pi,j partial
product bits with weights greater than 2n-1. No correction of
any kind is required. Fig. 1(b) presents the corresponding
partial product matrix for the modulo 28 case. 10 bits are
required and the maximum height is equal to 2.
(c) Diminished-one Modulo 2n+1

In the diminished-one modulo 2n+1 case, the least
significant Booth-encoded digit is derived using 11 −− = naa
[11]. For a bit z, it holds that

121212
222)1(2

+++

+ +−=−= nnn

iiiin zzz , 0≤i<n, and

12

0

12

2 22
++

= nn zz n . Hence all Ci,j and Pi,j bits (except the

Pi,MSB) with weights greater than 2n-1 can be inverted and re-
positioned in columns with weights less than or equal to 2n-1
as long as an additive constant correction term is taken into
account for each such move. For the Pi,MSB bits we have that:

12

22

0
,

)12(

12

22

0
,

)12(22
+

−

=

+

+

−

=

++ ∑∑ =−
nn

n

i
MSBi

i
n

i
MSBi

in PP .

Hence, each Pi,MSB can be simply moved to the
corresponding column with weight less than or equal to 2n-1
and no further action is required.

The additive constant correction terms due to the partial
product bit repositioning, along with the corresponding
constant correction terms required for reducing the partial
product bits in two summands and for deriving the final
result with a diminished-one modulo 2n+1 adder, can be
merged into a single n-bit constant correction term. Its value
can be easily shown to be 88…816 in the case of even values
of n that are multiples of 4 and be equal to 22…216 in the
case of even values of n that are not multiples of 4. Fig. 1(c)
presents the derived partial product matrix for the
diminished-one modulo 28+1 case. It also consists of 31
partial product bits, 8 of which have constant values, and the
maximum column height is also equal to 5.

Modulo 2n-1

27 26 25 24 23 22 21 20
 C1,2 C1,0 C0,2 C0,0
 C3,2 C3,0 C2,2 C2,0

P0,4 P0,3 P0,2 P0,1 P0,0 6,0P P0,5

P1,0 4,1P P1,3 P1,2 P1,1

 2,2P P2,1 P2,0
1 1 0 1 0 1 0 1

(a)

Modulo 2n
27 26 25 24 23 22 21 20
 C1,2 C1,0 C0,2 C0,0

P0,4 P0,3 P0,2 P0,1 P0,0
P1,0

(b)
Diminished-one Modulo 2n+1

27 26 25 24 23 22 21 20
 C1,2 C1,0 C0,2 C0,0

 2,3C 0,3C 2,2C 0,2C

P0,4 P0,3 P0,2 P0,1 P0,0 P0,6 5,0P

P1,0 P1,4 3,1P
2,1P 1,1P

 P2,2 1,2P
0,2P

1 0 0 0 1 0 0 0
(c)

Normal Modulo 2n+1
27 26 25 24 23 22 21 20
 C1,2 C1,0 C0,2 C0,0

 2,3C 0,3C 2,2C 0,2C

P0,4 P0,3 P0,2 P0,1 P0,0 P0,6 5,0P

P1,0 P1,4 3,1P
2,1P

1,1P

 P2,2 1,2P 0,2P

6a 5a 4a 3a 2a 1a
0a

87 aa ∨
1 0 0 0 1 0 1 0

 (d)
Figure 1. Partial product matrices of Booth-encoded 8-bit modulo squarers

409

(d) Normal Modulo 2n+1
We now consider the case of modulo 2n+1 squarers for

an (n+1)-bit operand A=anan-1…a0 ∈[0, 2n] in the normal
representation. At first we consider the A<2n case, that is,
an=0. If the n least significant bits of A are driven to the
modulo 2n+1 squarer derived for the diminished-one case
then this will compute the n least significant bits of

12

2 1)1(
+

−+ nA . Hence, we can use an extra partial product

equal to
12

2
+

− nA in the diminished-one squarer and derive

the n least significant bits of
12

2

+nA .
12

2
+

− nA can be

expressed as the n-bit vector 1032 −−− nnn aaaa , provided that
an additional correction term equal to 3 is also taken into
account. The most significant bit can be derived if a slightly
modified diminished-one adder [12] is used as the final
adder.

If A=2n, then an=1 and all the rest bits are 0. Since in this
case 12

12

2

12

2 ==
++ nn

nA , we can just position an at the

column with weight 20 and logically OR it with an-1 of the
partial product added for

12
2

+
− nA . All required correction

terms can be merged into a single n-bit vector, whose value
is constant and equal to the value of the corresponding
constant correction term in the diminished-one modulo 2n+1
squarers case increased by 2. Fig. 1(d) presents the derived
partial product matrix for the normal modulo 28+1 case (∨
denotes the logical OR operation). 39 partial product bits are
required in total, 8 of which have constant values, while the
maximum column height is equal to 6.

III. CONFIGURABLE MULTI-MODULI SQUARERS
Based on Section II, two multi-moduli squarer

architectures can be derived: (a) a 3-moduli squarer
architecture for operands in modulo 2n-1, 2n or 2n+1
assuming the diminished-one representation, and (b) a 4-
moduli squarer architecture for operands in modulo 2n-1, 2n
or 2n+1 assuming both the diminished-one and the normal
representation.

A. 3-Moduli Squarer Architecture
Let A = an-1…a0 denote the n-bit input operand. An n-bit

Booth-encoded squarer is based on n Ci,j bits and (n2/4-1) Pi,j
bits. A 3-moduli squarer requires, besides the Ci,j and Pi,j bits,
n more bits with constant values for the required corrections
in modulo 2n-1 and diminished-one modulo 2n+1. Half of the
Ci,j bits and almost half (⎣ ⎦ ⎣ ⎦)142(4 −− nnn) of the Pi,j bits

are modulo independent and hence can be used as is for all
modulo cases. The remaining bits are modulo-dependent and
therefore multiplexers have to be used for them. However,
since some of the multiplexers inputs have constant or
inverted/non-inverted values, simplifications can be made.

After the partial product bits are generated, they are
reduced in two n-bit summands using a Dadda adder tree of
n-bit wide Carry Save Adders (CSAs). In modulo 2n-1, a
carry, suppose z, at the most significant bit position of a CSA
can be moved to the least significant bit position since

12

0

12
22

−−
= nn zz n . Hence, End-Around-Carry (EAC)

CSAs can be used. In modulo 2n, a carry z can be ignored
since 02

2
=n

nz . In modulo 2n+1, a carry z can be inverted

and moved to the least significant bit position since

12

0

12
212

++
+−= nn zz n . Hence, inverted EAC CSAs can

be used as long as a constant correction term equal to -1 is
considered for every inverted EAC CSA. We note that these
constant correction terms are already included in the total
correction term that was presented in the previous section.
Hence, in the proposed architecture, each carry at the most
significant bit position of a CSA is driven to a multiplexer
that produces the correct value at the least significant bit
position according to the selected modulo value.

The two n-bit outputs of the adder tree are finally added
using a two-input modulo adder. The final adder of the 3-
moduli squarer architecture can be designed according to [8],
that is, using a parallel-prefix structure to add the two input
operands, a multiplexer to derive the appropriate value of the
reentrant carry, an extra prefix level to take this carry into
account and a level of XOR gates to produce the result.

Fig. 2 presents the proposed 3-moduli squarer
architecture for the n=8 case. a7…0 denote the bits of the
input operand A while f1 and f0 select the modulo value. t7…0
denote the constant correction bits for the three modulo
cases. These bits can be derived by simple logic gates.
pp22…0 denote the partial product bits that are derived based
on the Ci,j and Pi,j bits of the Booth-encoded squarer. pp22…0
and t7…0 bits are driven to a CSA tree that reduces them in
two 8-bit vectors which are then driven to the final adder to
produce the result r7…0 of the required modulo squaring. The
result is equal to A2 taken modulo 2n-1, 2n or 2n+1 (in the
diminished-one representation), according to f1 and f 0.

Parallel Prefix Structure
hs7 c7 hs6 c6 hs5 c5 hs4 c4 hs3 c3 hs2 c2 hs1 c1 hs0 c0

r3 r2 r1 r0r5 r4r7 r6

FAFA FA FAFA FA FAFA

FAHA FA FAFA FA FAFA

pp22 pp21 pp20 pp19 pp18 pp17 pp16 pp15

HA HA

pp4t0pp14t7 pp11t5 pp5t1pp7t2pp10t4pp13t6 pp9t3 pp6pp8pp12

pp1 pp0pp3 pp2

Pa
rt

ia
l p

ro
du

ct
 b

it
ge

ne
ra

tio
n

Pa
rt

ia
l p

ro
du

ct
 b

it
re

du
ct

io
n

Fi
na

l a
dd

iti
on

CSA

=

=

hsi c'i-1

ri

pi pi-1

p

gi-1

gi

g

MUX f1
f0

a

0

=

f1f0 modulo
00
01
1x

28-1
28

28+1 (d)

Multiplexers for modulo-dependent partial bit
generation

Pi and Ci generation

P2 P1 P0 C2 C1 C0C3

Constant bit
generation

pp22...0t7...0

f1 f0

Booth
Encoder

a0

A0

Booth
Encoder

a6a7 a5

A3

Booth
Encoder

a4 a3

A2

Booth
Encoder

a2 a1

A1

Figure 2. Proposed 3-moduli squarer for n=8

410

TABLE I. QUALITATIVE EVALUATION

n

 [8]
3-Mod Squarer

 Proposed
3-Mod Squarer

 Proposed
4-Mod Squarer

 #bits #MUXs #bits #MUXs #bits #MUXs
8 44 20 31 14 39 14

12 90 42 59 27 71 27
16 152 72 95 44 111 44
20 230 110 139 65 159 65
32 560 272 319 152 351 152

B. 4-Moduli Squarer Architecture
A more generic multi-modulo squarer architecture can be

derived if we include both normal and diminished-one
representations in the modulo 2n+1 case. Let A = an…a0
denote the input operand. The partial product matrix of the 4-
moduli squarer architecture can be derived exactly as the
corresponding of the 3-moduli one except that we have to
add an extra n-bit partial product equal to

12
2

+
− nA in the

normal modulo 2n+1 case and equal to 0 in the other 3
moduli cases. Hence, the Dadda adder tree that is used for
adding the partial products must have one more CSA and the
constant correction term in the diminished-one modulo 2n+1
case must be decreased by one compared to its
corresponding value in the case of the 3-moduli squarer
architecture. The most significant bit of the result can be
derived by the final adder as described in [12].

IV. EVALUATION AND COMPARISONS
The proposed architectures are compared against that of

[8]. Table I presents, for several values of n, the total number
of partial product bits and the number of multiplexers that
are required in each case. Both proposed architectures
require less bits and less multiplexers compared to that of
[8]. Hence, the proposed squarers are expected to outperform
those of [8] in area terms, even though the Booth-encoded
partial product generation logic is more complex than the
non-encoded one of [8].

In order to validate the conclusions drawn before, we
described in HDL multi-moduli squarers for several values
of n. In all cases, we considered that the final adder has a
Kogge-Stone parallel prefix carry computation unit. After
validating the correct operation of the HDL descriptions via
simulation, we synthesized them in a standard cell 90nm
CMOS technology, using a standard delay optimization
script, and derived estimates for area and delay. The attained
results, given in Table II, indicate that both the proposed
squarers are significantly more area efficient than those of
[8] while in most cases they also offer a faster
implementation. Area reductions up to 31% are reported in
the case of the 3-moduli squarer architecture and up to 26%
in the case of the 4-moduli squarer architecture. The only
exception is the case of n=8 where the proposed architectures

are a little slower and in the case of the 4-moduli squarer
architecture a little larger than the squarers of [8] since the
complexity of the Booth-encoded partial product bit
generation outperforms the reduction in the number of partial
product bits and the reduction in the number of multiplexers
that are required.

V. CONCLUSIONS
Two architectures for multi-moduli squaring have been

presented. The first one supports operands in modulo 2n-1, 2n
or 2n+1 assuming the diminished-one representation while
the second one supports operands in modulo 2n-1, 2n or 2n+1
assuming both the diminished-one and the normal
representation. The partial product bit generation has been
based on the modified Booth encoding. Experimental data
verified that the proposed architectures result in more
efficient circuits than those of [8].

REFERENCES
[1] P. V. Ananda Mohan, Residue Number Systems: Algorithms and

Architectures, Netherlands: Kluwer Academic Publishers, 2002.
[2] A. Omondi and B. Premkumar, Residue Number Systems: Theory

and Implementation, London: Imperial College Press, 2007.
[3] L. Leibowitz, “A simplified binary arithmetic for the fermat number

transform,” IEEE Trans. Acoust., Speech, Signal Processing, vol. 24,
no. 5, Oct. 1976, pp. 356-359.

[4] V. Paliouras and T. Stouraitis, “Multifunction architectures for RNS
processors,” IEEE Trans. on Circuits and Systems - II, vol. 46, no. 8,
Aug. 1999, pp. 1041-1054.

[5] G. Jaberipur and B. Parhami, “Unified approach to the design of
modulo-(2n±1) adders based on signed-LSB representation of
residues,” Proc. IEEE Int. Symposium on Computer Arithmetic,
2009, pp. 57-64.

[6] C. –H. Chang, S. Menon, B. Cao and T. Srikanthan, “A configurable
dual-moduli multi-operand modulo adder,” Proc. IEEE Int. Symp.
Circuits and Systems, 2005, pp. 1630-1633.

[7] S. Menon and C. –H. Chang, “A reconfigurable multi-modulus
modulo multiplier,” Proc. IEEE Asia Pacific Conf. on Circuits and
Systems, 2006, pp. 1168-1171.

[8] R. Muralidharan and C. –H. Chang, “Fixed and variable multi-
modulus squarer architectures for triple moduli base of RNS,” Proc.
IEEE Int. Symp. Circuits and Systems, 2009, pp. 441-444.

[9] A. Strollo and D. Caro, “Booth folding encoding for high
performance squarer circuits,” IEEE Trans. on Circuits and Systems –
II, vol. 50, no. 5, May 2003, pp. 250-254.

[10] C. Efstathiou, H. T. Vergos and D. Nikolos, “Modified Booth
modulo 2n-1 multipliers,” IEEE Trans. on Computers, vol. 53, no. 3,
Mar. 2004, pp. 370-374.

[11] Y. Ma, “A simplified architecture for modulo (2n+1) multiplication,”
IEEE Trans. on Computers, vol. 47, no. 3, Mar. 1998, pp. 333-337.

[12] H. T. Vergos, D. Bakalis and C. Efstathiou, “Fast modulo 2n+1 multi-
operand adders and residue generators,” Integration, the VLSI
Journal, vol. 43, no. 1, Jan. 2010, pp. 42-48.

TABLE II. CMOS VLSI EXPERIMENTAL RESULTS

n

 Squarer [8] Proposed 3-Moduli Squarer Proposed 4-Moduli Squarer
 Area

(um2)
Delay
(ns)

 Area
(um2)

Delay
(ns)

Area
reduction

Delay
reduction

Area
(um2)

Delay
(ns)

Area
reduction

Delay
reduction

8 6530 0.88 5601 0.90 14.2% -1.6% 6914 0.93 -5.9% -5.4%
12 14224 1.08 11870 1.01 16.5% 6.8% 13367 1.05 6.0% 2.3%
16 24471 1.19 19229 1.07 21.4% 9.6% 21386 1.16 12.6% 1.9%
20 38787 1.27 28210 1.18 27.3% 6.7% 30959 1.25 20.2% 1.2%
32 95346 1.42 65754 1.34 31.0% 5.4% 70475 1.35 26.1% 4.9%

411

