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Abstract—Multi-moduli architectures are very useful for 
reconfigurable digital processors and fault-tolerant systems 
that are based on the Residue Number System (RNS). In this 
paper we propose two architectures for multi-moduli squaring 
that support the most common moduli cases in RNS channels, 
that is, 2n-1, 2n and 2n+1. The proposed architectures are based 
on the modified Booth encoding of the input operand for 
deriving the required partial products and on Dadda adder 
trees for their addition. Experimental results show that the 
proposed squarers offer significant savings in area compared 
to previous proposals while a small improvement in delay is 
achieved in most cases as well. 

Keywords- Modulo arithmetic; residue number system;    
modulo 2n±1; modulo squarers 

I.  INTRODUCTION 
The Residue Number System (RNS) is a number system 

commonly adopted for speeding up computations in digital 
signal processing, cryptography and telecommunication 
applications and for fault-tolerant computing [1] [2]. A non-
positional RNS is defined by a set of L moduli, suppose    
{m1, …, mL} that are pair-wise relatively prime. Let 

M
A  

denote the modulo M residue of an integer A, that is, the least 
non-negative remainder of the division of A by M. A has a 
unique representation in the RNS, given by the set             
{a1, …, aL} of residues, where 

imi Aa = . 

The three-moduli set {2n-1, 2n, 2n+1} is the most 
commonly used in RNS, given apart from the fast 
implementations of the arithmetic operations, fast converters 
between the residue and the binary representation. In this 
moduli set, the 2n+1 channel has to deal with operands one 
bit wider than the other two, leading to a performance 
bottleneck. The diminished-one representation was 
introduced to face this problem [3]. In the diminished-one 
representation each number is represented decreased by one 
compared to its normal representation and all arithmetic 
operations are inhibited for a zero operand. The diminished-
one representation has the advantage that it requires only n 
bits, allowing to better equalize the delay of the three 
channels. 

Reconfigurable computing for RNS-based systems has 
recently gained a significant interest. Multi-moduli 
architectures [4], that is, architectures for arithmetic circuits 
that support more than one modulo cases are very useful 

building blocks since they can be exploited for hardware 
reuse and offer substantial area savings. Multi-moduli 
architectures can be applied in reconfigurable RNS-based 
digital signal processors for providing flexibility and for 
easing the customization of the desired dynamic range and in 
fault-tolerant RNS-based systems for reducing the hardware 
costs of the redundant RNS channels. To this end, several 
reconfigurable multi-moduli architectures for the                
{2n-1, 2n, 2n+1} moduli set have been presented recently   
[5]-[8].  

In this paper we present efficient multi-moduli squarers 
for the modulo 2n-1, 2n and 2n+1 cases, assuming both the 
normal and the diminished-one representation for the latter 
case.  The proposed architectures are based on the modified 
Booth algorithm for generating the partial products and on 
Dadda adder trees for their addition.  

The remaining of the paper is organized as follows. 
Section II presents the partial product matrices that are 
required in the modulo squaring operation, for the various 
modulo cases. Efficient multi-moduli squarer architectures 
are introduced in Section III while section IV presents 
experimental results. Section V concludes the paper. 

II. BOOTH-ENCODED MODULO SQUARERS 
Every modulo squarer requires the partial products 

generation, their reduction in two summands and a final 
addition for deriving the result. In this section we concentrate 
on the partial products generation. 

Let A = an-1…a0 be the n-bit input operand of a squarer. 
For simplicity, we consider in the following that n is even 
and use the n=8 case as an example. According to the radix-4 
modified Booth encoding, we can rewrite A as 

∑
−

=

=
12

0

22
n

i
i

i AA , where ]2,2[)2( 12212 +−∈++−= −+ iiii aaaA  

and a-1=0. Thus, the square of A, A2, can be computed using 
the Booth-encoded digits Ai as follows [9]:  
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terms, 0≤i<n/2, are unsigned numbers that can be 
represented by three bits since they assume only the values 0, 
1 or 4. However, since the middle bit is always equal to 0, 
there is no need to be included in the partial product matrix. 
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On the other hand, the Pi terms, are signed two’s 
complement numbers that can easily be derived using simple 
circuits, such as those presented in [9]. Each Pi term, 
0≤i<n/2-1, requires (n-1-2i) bits. Let Ci,j and Pi,j denote the   
j-th bit of Ci and Pi, respectively. Let the most significant bit 
of each Pi term also be denoted as Pi,MSB.  

Let us now focus on the modulo squaring operation. We 
consider the several moduli cases separately in the following. 
(a) Modulo 2n-1  

Relation (1) can be used in the modulo 2n-1 case as long 
as we take into account that a-1=an-1 in the least significant 
Booth-encoded digit [10]. For attaining an n-bit wide matrix, 
we need to reposition all partial product bits with weights 
greater than 2n-1 to the columns with weights less than or 
equal to 2n-1. For a bit z, it holds that 

1212
22

−−

+ = nn

iin zz , 

i ≥ 0. Hence, all Ci,j and Pi,j bits (except the Pi,MSB bits) with 
weights greater than 2n-1 can be moved to columns with 
weights less than or equal to 2n-1. The Pi,MSB bits however 
need to be treated differently since they represent the sign of 
a two’s complement Pi term and correspond to negative 
values. It can be easily shown that  
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Hence, we invert every Pi,MSB bit, move it in a column 
with weight less than 2n-1 and also include some constant 
correction bits in the remaining columns. Fig. 1(a) presents 
the derived partial product matrix for the modulo 28-1 case. 
It consists of 31 partial product bits, 8 of which have 
constant values, and its maximum height among all columns 
is equal to 5. 
(b) Modulo 2n 

Since it holds that 02
2

=+
n

inz , i≥0, for attaining an n- 

bit wide matrix, we can simply ignore all Ci,j and Pi,j partial 
product bits with weights greater than 2n-1. No correction of 
any kind is required. Fig. 1(b) presents the corresponding 
partial product matrix for the modulo 28 case. 10 bits are 
required and the maximum height is equal to 2. 
(c) Diminished-one Modulo 2n+1 

In the diminished-one modulo 2n+1 case, the least 
significant Booth-encoded digit is derived using 11 −− = naa  
[11]. For a bit z, it holds that 

121212
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Pi,MSB) with weights greater than 2n-1 can be inverted and re-
positioned in columns with weights less than or equal to 2n-1 
as long as an additive constant correction term is taken into 
account for each such move. For the Pi,MSB bits we have that: 
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Hence, each Pi,MSB can be simply moved to the 
corresponding column with weight less than or equal to 2n-1 
and no further action is required.  

The additive constant correction terms due to the partial 
product bit repositioning, along with the corresponding 
constant correction terms required for reducing the partial 
product bits in two summands and for deriving the final 
result with a diminished-one modulo 2n+1 adder, can be 
merged into a single n-bit constant correction term. Its value 
can be easily shown to be 88…816 in the case of even values 
of n that are multiples of 4 and be equal to 22…216 in the 
case of even values of n that are not multiples of 4. Fig. 1(c) 
presents the derived partial product matrix for the 
diminished-one modulo 28+1 case. It also consists of 31 
partial product bits, 8 of which have constant values, and the 
maximum column height is also equal to 5. 

Modulo 2n-1 

27 26 25 24 23 22 21 20 
 C1,2  C1,0  C0,2  C0,0
 C3,2  C3,0  C2,2  C2,0 

P0,4 P0,3 P0,2 P0,1 P0,0  6,0P P0,5 

P1,0    4,1P  P1,3 P1,2 P1,1 

  2,2P  P2,1 P2,0    
1 1 0 1 0 1 0 1 

(a) 

Modulo 2n 
27 26 25 24 23 22 21 20 
 C1,2  C1,0  C0,2  C0,0 

        
P0,4 P0,3 P0,2 P0,1 P0,0    
P1,0        

        
   
   

(b) 
Diminished-one Modulo 2n+1 

27 26 25 24 23 22 21 20 
 C1,2  C1,0  C0,2  C0,0

 2,3C   0,3C   2,2C   0,2C

P0,4 P0,3 P0,2 P0,1 P0,0  P0,6 5,0P

P1,0    P1,4 3,1P  
2,1P 1,1P

  P2,2 1,2P  
0,2P     

      

1 0 0 0 1 0 0 0 
(c) 

Normal Modulo 2n+1 
27 26 25 24 23 22 21 20 
 C1,2  C1,0 C0,2  C0,0

 2,3C  0,3C  2,2C   0,2C

P0,4 P0,3 P0,2 P0,1 P0,0  P0,6 5,0P

P1,0    P1,4 3,1P  
2,1P  

1,1P

  P2,2 1,2P 0,2P    

6a 5a 4a 3a 2a 1a  
0a  

87 aa ∨
1 0 0 0 1 0 1 0 

 (d) 
Figure 1.  Partial product matrices of Booth-encoded 8-bit modulo squarers 
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(d) Normal Modulo 2n+1  
We now consider the case of modulo 2n+1 squarers for 

an (n+1)-bit operand A=anan-1…a0 ∈[0, 2n] in the normal 
representation. At first we consider the A<2n case, that is, 
an=0. If the n least significant bits of A are driven to the 
modulo 2n+1 squarer derived for the diminished-one case 
then this will compute the n least significant bits of 

12

2 1)1(
+

−+ nA . Hence, we can use an extra partial product 

equal to 
12

2
+

− nA  in the diminished-one squarer and derive 

the n least significant bits of 
12

2

+nA . 
12

2
+

− nA  can be 

expressed as the n-bit vector 1032 −−− nnn aaaa , provided that 
an additional correction term equal to 3 is also taken into 
account. The most significant bit can be derived if a slightly 
modified diminished-one adder [12] is used as the final 
adder.  

If A=2n, then an=1 and all the rest bits are 0. Since in this 
case 12

12

2

12

2 ==
++ nn

nA , we can just position an at the 

column with weight 20 and logically OR it with an-1 of the 
partial product added for 

12
2

+
− nA . All required correction 

terms can be merged into a single n-bit vector, whose value 
is constant and equal to the value of the corresponding 
constant correction term in the diminished-one modulo 2n+1 
squarers case increased by 2. Fig. 1(d) presents the derived 
partial product matrix for the normal modulo 28+1 case (∨ 
denotes the logical OR operation). 39 partial product bits are 
required in total, 8 of which have constant values, while the 
maximum column height is equal to 6. 

III. CONFIGURABLE MULTI-MODULI SQUARERS 
Based on Section II, two multi-moduli squarer 

architectures can be derived: (a) a 3-moduli squarer 
architecture for operands in modulo 2n-1, 2n or 2n+1 
assuming the diminished-one representation, and (b) a 4-
moduli squarer architecture for operands in modulo 2n-1, 2n 
or 2n+1 assuming both the diminished-one and the normal 
representation.  

A. 3-Moduli Squarer Architecture 
Let A = an-1…a0 denote the n-bit input operand. An n-bit 

Booth-encoded squarer is based on n Ci,j bits and (n2/4-1) Pi,j 
bits. A 3-moduli squarer requires, besides the Ci,j and Pi,j bits, 
n more bits with constant values for the required corrections 
in modulo 2n-1 and diminished-one modulo 2n+1. Half of the 
Ci,j bits and almost half ( ⎣ ⎦ ⎣ ⎦ )142(4 −− nnn ) of the Pi,j bits 

are modulo independent and hence can be used as is for all 
modulo cases. The remaining bits are modulo-dependent and 
therefore multiplexers have to be used for them. However, 
since some of the multiplexers inputs have constant or 
inverted/non-inverted values, simplifications can be made. 

After the partial product bits are generated, they are 
reduced in two n-bit summands using a Dadda adder tree of 
n-bit wide Carry Save Adders (CSAs). In modulo 2n-1, a 
carry, suppose z, at the most significant bit position of a CSA 
can be moved to the least significant bit position since 

12

0

12
22

−−
= nn zz n . Hence, End-Around-Carry (EAC) 

CSAs can be used. In modulo 2n, a carry z can be ignored 
since 02

2
=n

nz . In modulo 2n+1, a carry z can be inverted 

and moved to the least significant bit position since 

12

0

12
212

++
+−= nn zz n . Hence, inverted EAC CSAs can 

be used as long as a constant correction term equal to -1 is 
considered for every inverted EAC CSA. We note that these 
constant correction terms are already included in the total 
correction term that was presented in the previous section. 
Hence, in the proposed architecture, each carry at the most 
significant bit position of a CSA is driven to a multiplexer 
that produces the correct value at the least significant bit 
position according to the selected modulo value.  

The two n-bit outputs of the adder tree are finally added 
using a two-input modulo adder. The final adder of the 3-
moduli squarer architecture can be designed according to [8], 
that is, using a parallel-prefix structure to add the two input 
operands, a multiplexer to derive the appropriate value of the 
reentrant carry, an extra prefix level to take this carry into 
account and a level of XOR gates to produce the result.  

Fig. 2 presents the proposed 3-moduli squarer 
architecture for the n=8 case. a7…0 denote the bits of the 
input operand A while f1 and f0 select the modulo value. t7…0 
denote the constant correction bits for the three modulo 
cases. These bits can be derived by simple logic gates. 
pp22…0 denote the partial product bits that are derived based 
on the Ci,j and Pi,j bits of the Booth-encoded squarer. pp22…0 
and t7…0 bits are driven to a CSA tree that reduces them in 
two 8-bit vectors which are then driven to the final adder to 
produce the result r7…0 of the required modulo squaring. The 
result is equal to A2 taken modulo 2n-1, 2n or 2n+1 (in the 
diminished-one representation), according to f1 and f 0. 

Parallel Prefix Structure
hs7  c7         hs6  c6         hs5  c5         hs4  c4         hs3  c3         hs2  c2         hs1  c1         hs0  c0

r3 r2 r1 r0r5 r4r7 r6

FAFA FA FAFA FA FAFA

FAHA FA FAFA FA FAFA

pp22 pp21 pp20 pp19 pp18 pp17 pp16 pp15
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01
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28

28+1 (d)

Multiplexers for modulo-dependent partial bit 
generation

Pi and Ci generation

P2 P1 P0 C2 C1 C0C3

Constant bit 
generation

pp22...0t7...0

f1 f0

Booth 
Encoder

a0

A0

Booth 
Encoder
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A3
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Encoder
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Encoder
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Figure 2.  Proposed 3-moduli squarer for n=8 

410



TABLE I.  QUALITATIVE EVALUATION 

n 

 [8]  
3-Mod Squarer 

 Proposed  
3-Mod Squarer 

 Proposed 
4-Mod Squarer 

 #bits #MUXs  #bits #MUXs  #bits #MUXs
8  44 20  31 14  39 14

12  90 42  59 27  71 27
16  152 72  95 44  111 44
20  230 110  139 65  159 65
32  560 272  319 152  351 152

B. 4-Moduli Squarer Architecture 
A more generic multi-modulo squarer architecture can be 

derived if we include both normal and diminished-one 
representations in the modulo 2n+1 case. Let A = an…a0 
denote the input operand. The partial product matrix of the 4-
moduli squarer architecture can be derived exactly as the 
corresponding of the 3-moduli one except that we have to 
add an extra n-bit partial product equal to 

12
2

+
− nA  in the 

normal modulo 2n+1 case and equal to 0 in the other 3 
moduli cases. Hence, the Dadda adder tree that is used for 
adding the partial products must have one more CSA and the 
constant correction term in the diminished-one modulo 2n+1 
case must be decreased by one compared to its 
corresponding value in the case of the 3-moduli squarer 
architecture. The most significant bit of the result can be 
derived by the final adder as described in [12]. 

IV. EVALUATION AND COMPARISONS 
The proposed architectures are compared against that of 

[8]. Table I presents, for several values of n, the total number 
of partial product bits and the number of multiplexers that 
are required in each case. Both proposed architectures 
require less bits and less multiplexers compared to that of 
[8]. Hence, the proposed squarers are expected to outperform 
those of [8] in area terms, even though the Booth-encoded 
partial product generation logic is more complex than the 
non-encoded one of [8]. 

In order to validate the conclusions drawn before, we 
described in HDL multi-moduli squarers for several values 
of n. In all cases, we considered that the final adder has a 
Kogge-Stone parallel prefix carry computation unit. After 
validating the correct operation of the HDL descriptions via 
simulation, we synthesized them in a standard cell 90nm 
CMOS technology, using a standard delay optimization 
script, and derived estimates for area and delay. The attained 
results, given in Table II, indicate that both the proposed 
squarers are significantly more area efficient than those of 
[8] while in most cases they also offer a faster 
implementation. Area reductions up to 31% are reported in 
the case of the 3-moduli squarer architecture and up to 26% 
in the case of the 4-moduli squarer architecture. The only 
exception is the case of n=8 where the proposed architectures 

are a little slower and in the case of the 4-moduli squarer 
architecture a little larger than the squarers of [8] since the 
complexity of the Booth-encoded partial product bit 
generation outperforms the reduction in the number of partial 
product bits and the reduction in the number of multiplexers 
that are required.  

V. CONCLUSIONS 
Two architectures for multi-moduli squaring have been 

presented. The first one supports operands in modulo 2n-1, 2n 
or 2n+1 assuming the diminished-one representation while 
the second one supports operands in modulo 2n-1, 2n or 2n+1 
assuming both the diminished-one and the normal 
representation. The partial product bit generation has been 
based on the modified Booth encoding. Experimental data 
verified that the proposed architectures result in more 
efficient circuits than those of [8]. 
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 Area 

(um2) 
Delay 
(ns) 

 Area
(um2) 

Delay
(ns) 

Area
reduction

Delay
reduction

Area
(um2) 

Delay 
(ns) 

Area 
reduction 

Delay
reduction
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