
SUT-RNS Forward and Reverse Converters

 E. Vassalos, D. Bakalis
Electronics Laboratory, Dept. of Physics

University of Patras
Patras, Greece

vassalos@upatras.gr, bakalis@physics.upatras.gr

H. T. Vergos
Dept. of Computer Engineering and Informatics

University of Patras
Patras, Greece

vergos@ceid.upatras.gr

Abstract—Stored Unibit Transfer (SUT) has been recently
proposed as a redundant high-radix encoding for the channels of
a Residue Number System (RNS) that can improve the efficiency
of conventional redundant RNS. In this paper we propose
modulo 2n±1 forward and reverse converters for the SUT-RNS
encoding. The proposed converters are based on parallel-prefix
binary or modulo adders and are therefore very efficient.

Keywords-Redundant arithmetic; modulo arithmetic; residue
number system; modulo 2n±1; stored-unibit-trasfer; forward
converter; reverse converter

I. INTRODUCTION
Residue Number System (RNS) [1] [2] is a number system

commonly adopted for speeding up computations in digital
signal processing [3] [4] [5] [6], cryptography [7] and
telecommunication applications [8] [9]. A non-positional RNS
is defined by a set of L moduli, suppose {m1, …, mL} that are
pair-wise relatively prime. Assume that |A|M denotes the
modulo M residue of an integer A, that is, the least non-
negative remainder of the division of A by M. A has a unique
representation in the RNS, given by the set {a1, …, aL} of
residues, where

imi Aa = . An operation ⊗ over an RNS is

defined as (z1, …, zL) = (a1, …, aL) ⊗ (b1, …, bL), where

imiii baz ⊗= . The computation of zi only depends on ai, bi,

and mi and each zi is computed in parallel in a separate
arithmetic unit often called a channel. Since each channel deals
with narrow residues instead of wide numbers and since all
channels operate in parallel, significant speedup over the binary
may be achieved. RNSs built on 2n±1 moduli have received
significant attention due to the efficient arithmetic circuits that
have been proposed for them. Any carry propagation in an
RNS is restricted inside each channel.

Binary Signed-Digit (BSD) [10] has been proposed as a
redundant, carry-free, number system where addition can be
performed in constant time. The BSD number system
represents each number with a set of digits in {-1, 0, +1}. Each
digit requires two bits for its representation leading to a
significant overhead in storage, processing and interconnection
requirements. Hybrid redundant number systems, such as those
with weighted two-valued digit set encodings [11] [12], have
been proposed as an alternative that can limit the maximum
length of carry propagation chains to any desired value and can
lead to a wide representation range without the added costs
associated with BSD. Furthermore, they can utilize

conventional components such as full/half adders and can
therefore produce highly efficient circuit implementations.
Examples of such encodings are the Stored-Unibit Transfer
(SUT) encoding [11] [12] and the Signed-LSB encoding [13].

Several attempts have been made to combine the parallel
nature of RNS with the carry-free or carry-limited nature of
redundant number systems. [14] [15] and [16] are among the
most recent works that deal with the use of BSD inside each
channel of an RNS in order to eliminate the intra-channel carry
propagation. They propose efficient arithmetic circuits, such as
adders and multipliers, for the modulo 2n±1 cases. The authors
of [13] propose modulo 2n±1 adders based on the Signed-LSB
encoding. In order to trade-off the area overhead of the BSD
with the delay, [17] [18] propose the use of the SUT encoding
for the modulo 2n±1 RNS channels and present SUT-RNS
addition, subtraction and multiplication circuits. However, to
the best of our knowledge, no architecture has been reported so
far for converting a binary modulo 2n±1 number from/to its
corresponding SUT-RNS encoding, making the arithmetic
circuits proposed for SUT-RNS in [17] [18] inapplicable.

In this paper we fill this gap by presenting forward and
reverse converters for modulo 2n±1 SUT-RNS encoding. The
proposed converters are based on parallel-prefix binary or
modulo 2n±1 adders and some extra simple logic and are very
efficient.

The remaining of the paper is organized as follows. The
next section presents an overview of the SUT-RNS encoding.
Forward and reverse converters for modulo 2n±1 SUT-RNS
channels are given in Sections III and IV, respectively. Section
V evaluates the proposed circuits and presents some
experimental results. Section VI concludes the paper.

II. REDUNDANT HIGH-RADIX SUT-RNS
Every SUT-encoded number is composed of SUT digits.

Each SUT digit consists of two-valued digits (twits) of three
types: posibits {0, +1}, negabits {-1, 0}, and unibits {-1, +1}.
A posibit has a lower value equal to 0 whereas a negabit and a
unibit have a lower value equal to -1. Furthermore, a posibit
and a negabit use a gap size equal to 1 whereas a unibit uses a
gap size equal to 2 [11]. All three twits require one bit for their
representation and use bias encoding, that is, their lower value
is encoded in binary with logical 0 whereas their upper value is
encoded in binary with logical 1. The dot notations, symbolic
notations and binary encodings of the twits are given in
Table I.

2010 IEEE Annual Symposium on VLSI

978-0-7695-4076-4/10 $26.00 © 2010 IEEE

DOI 10.1109/ISVLSI.2010.23

11

TABLE I. DOT NOTATION, SYMBOLIC NOTATION AND BINARY
ENCODING OF TWITS

Twit Dot notation Symbolic notation Lower
value

Upper
value

Negabit Xi 0 (-1) 1 (0)
Posibit xi 0 (0) 1 (+1)
Unibit x′i 0 (-1) 1 (+1)

SUT-RNS has been proposed as a redundant, high-radix,
encoding for modulo 2n±1 numbers [17] [18]. Every SUT-
RNS-encoded number consists of k radix-2h SUT digits
(n=k×h), where each SUT digit consists of (h+1) twits, that is,
(h-1) posibits, 1 negabit and 1 unibit. The negabit along with
the posibits represent the radix-2h main part [-2h-1, +2h-1-1]
whereas the unibit represents the transfer part of the SUT digit.
The symbolic and dot notation of a k-digit (Dk…D1) SUT-RNS
number X are shown in Fig. 1. The maximum representable
number is equal to)12()12(12 −−−+= hkhh

MAX
X whereas the

minimum representable number is equal to
)12()12()112(−−−−−= hkhh

MIN
X . For example, when n=6

(k=2 and h=3), representable numbers are between -45 and
+36. A modulo 2n+1 (2n-1) number X, X∈[0, 2n] (X∈[0, 2n-1]
assuming a double representation of zero), can be encoded in
SUT-RNS by utilizing the positive range of the SUT-RNS
encoding for some values of X and the negative range for the
remaining values. Assuming the values of n, k and h of the
previous example, number 7 can be encoded as +7 in both
moduli cases whereas number 37 can be encoded as -28 in
modulo 26+1 since |37|65 = |-28|65 and can be encoded as -26 in
modulo 26-1 since |37|63 = |-26|63.

D1D2Dk

Xkh-1xkh-2 … x(k-1)h . . . X2h-1x2h-2 … xh Xh-1 xh-2 … x0

x’(k-1)h x’h x’0

(a)

(b)

.

Figure 1. (a) Dot and (b) symbolic notation of a k-digit radix-2h SUT-RNS
number X

0

0

0

XMAXXMIN

-2n-1 +(2n-1-1)

2n

(2n-1-1)-R

(2n-1-1)-R

SUT

2's Complement
[12]

Modulo 2n
SUT-RNS

+

+

+

Figure 2. Positive and negative range of the SUT-RNS encoding

III. FORWARD CONVERTERS
In order to utilize the adder, subtractor and multiplier

circuits that were proposed in [18] for SUT-RNS, one has to
use forward converters to derive the SUT-RNS encodings of
the input operands. In [18] no such circuits have been
presented. [12] reported an algorithm for converting a signed
two’s complement number to an SUT representation. However
this algorithm cannot be used as is in the SUT-RNS encoding
since in this case the input is a modulo 2n+1 or a modulo 2n-1
unsigned number. We present in this section efficient forward
converters of a modulo 2n±1 number to the SUT-RNS
encoding. We consider the two cases of moduli separately.

A. Modulo 2n-1
Consider an n-bit modulo 2n-1 number X=xn-1…x0. The

algorithm for forward conversion presented in [12] can
correctly encode in SUT-RNS every value of X that lies in the
positive range of the SUT-RNS encoding (see Fig. 2).
However, for all values of X that are encoded in SUT-RNS in
the negative range, a value decreased by one compared to the
correct modulo 2n-1 value is produced since modulo 2n
arithmetic is used instead and

121212
11)12(2

−−−
−=−−−=− nnn XXX nn . Hence, for all the

SUT-RNS encoded values of X that lie in the negative range,
we have to increase the corresponding value of X by one in
order to get the correct modulo 2n-1 value.

The following two-step algorithm is a modification of the
forward conversion algorithm of [12] that deals with the above-
mentioned problem and performs correct modulo 2n-1 forward
SUT-RNS conversion:

Step I: Compute y=X+R+s=y'+s, where y and
R=(2kh-1)/(2h-1) denote n-bit operands, y'=X+R, and s denotes
a sign indication bit whose value is equal to 0 when the value
of X lies in the positive range of the SUT-RNS encoding and is
equal to 1 when the value of X lies in the negative range.

According to Fig. 2,
⎩
⎨
⎧

≥+
<+

= −

−

1

1

2,1
2,0

n

n

RX
RX

s . Hence, sign s can

be derived by the logical equation 11 −− ∨′= nn cys , where 1−′ny
and cn-1 are the most significant bit and carry out of the (X+R)
addition and ∨ denotes the logical OR operation. A
straightforward solution for deriving the bits of y uses a binary
adder for deriving y′ and a controllable incrementer for
incorporating s. However, those two operations can be
efficiently merged in a parallel-prefix-based adder (see Fig. 3).
The X and R operands can be driven to a parallel-prefix
structure that in log2n levels can derive the n carries
(cn-1, …, c0) of X+R. Then, s can be derived by an XOR and an
OR gate, as s = (hsn-1 ⊕ cn-2) ∨ cn-1, where hsn-1 = xn-1 ⊕ Rn-1 is
the half-sum bit of the most significant bit position. An extra
prefix level can then be used for adding the value of s and for
producing a new set of carries (c′n-2, …, c′0). Finally, the n-bits
of y can be derived by 2-input XOR gates. We have to note that
since R is a constant that has a value equal to 1 in all bit
positions with weights 2ih, 0≤i<k, and a value equal to 0 in all
other bit positions, the parallel-prefix structure can be
significantly simplified.

12

R

RNSSUTX −

| |

X

Figure 3. Proposed modulo 2n-1 SUT-RNS forward converter

Step II: Use the following logic equations [12] to transform
the bits of y to the corresponding SUT-RNS encoding of X,
denoted as XSUT-RNS, assuming that y-1=0 and that ∧ denotes the
logical AND operation, while z denotes the logical NOT
operation on bit z:

a. negabits : Xih-1 = 1−ihy for 1 ≤ i ≤ k

b. posibit : xih = yih ⊕ yih-1 for 0 ≤ i ≤ k-1
c. posibits : xih-j = yih-j for 1 ≤ i ≤ k and 2 ≤ j < h
d. unibits : x′ih = yih ∧ yih-1 , for 0 ≤ i ≤ k-1

Step II implies that the unibit x′0 is always equal to 0. The
complete circuit structure that realizes the above algorithm is
given in Fig. 3 and is capable of dealing with both
representations of zero in modulo 2n-1 arithmetic, that is, 0 and
2n-1.

Example 1: Suppose that n=k×h=2×4=8 and X=153. Then
R=17, y′=170, s=1 and y=153+17+1=171=101010112.
According to Step II, X7 = 7y = 0, x6 = y6 = 0, x5 = y5 = 1,
x4 = y4⊕y3 = 1, x′4 = y4∧y3 = 0, X3 = 3y = 0, x2 = y2 = 0,
x1 = y1 = 1, x0 = y0⊕y-1 = 1, and x′0 = y0∧y-1 = 0, thus

04

01234567

xx
xxxXxxxX

X RNSSUT ′′
=− 00

00110011
= =

(-6)×24+(-6)×20 = |-102|255 = 153.

B. Modulo 2n+1
Consider now a (n+1)-bit modulo 2n+1 number

X=xnxn-1…x0 ∈ [0, 2n]. The forward converter of [12] could be
used to encode X in SUT-RNS. However, for all values of X
that lie in the negative range of the SUT-RNS encoding an
increased by one value compared to the correct one would be
produced since

121212
11)12(2

+++
+=++−=− nnn XXX nn .

Hence, for all these values of X we have to decrease by one in
order to get the correct modulo 2n+1 SUT-RNS encoding.

The following algorithm is similar to the one presented
previously for modulo 2n-1 and performs modulo 2n+1 SUT-
RNS forward conversion.

Step I: Compute sRXy −+= sRX +−+=)1(
syx n

n +′+= 2 , where y and R=(2kh-1)/(2h-1) denote n-bit
operands,)1(

2
−+=′ RXy n , and s denotes the sign

indication bit. According to Fig. 2,

⎪
⎩

⎪
⎨

⎧

⎪
⎩

⎪
⎨

⎧

−=−+
≥−+

−<−+
=

−≥−+
−<−+

⎩
⎨
⎧

=
≥+
<+

=
−

−

−

−

−

−

−

12)1(,1
2)1(,1

12)1(,0

12)1(,1
12)1(,0

2,1
2,0

1

1

1

1

1

1

1

n

n

n

n

n

n

n

RX
RX

RX

RX
RX

RX
RX

s
.

The first two conditions can be identified by the logical
equation s=y′n-1 ∨ cn-1 ∨ xn, where y′n-1 and cn-1 are the most
significant bit and carry out of the)1(

2
−+ RX n addition,

respectively. Note that s also incorporates the most significant
bit of X, xn, in order to add the value xn2n. Hence, the n least
significant bits of X and (R-1) are driven to an n-bit parallel-
prefix structure. Then s is derived by an XOR and a NOR
gate while an extra parallel prefix level is used to add the value
of s and produce y.

Step II: Use the same logic equations as in the modulo
2n-1 case to transform the bits of y to the corresponding SUT-
RNS encoding XSUT-RNS. The above algorithm produces the
correct SUT-RNS encoding for all values of X except when
X+(R-1)=2n-1-1 (third condition). In this case we still have to
subtract one. This can be easily achieved by deriving a signal m
indicating the case where X+(R-1)=2n-1-1 and correcting in this
case the SUT-RNS encoding only of the least significant SUT
digit. The logic equation for m is: 0...21 hsnhsnhsm ∧∧−∧−= ,
where hsn-1, …, hs0 denote the half-sum bits of the parallel-
prefix structure. m can be derived as fast as the carries of the
parallel-prefix structure and hence it doesn’t increase the delay
of the forward converter. The twits of the least significant SUT
digit are then derived by the following logic equations:

a. negabit : Xh-1 = m ⊕ 1−hy
b. posibit : x1 = y1
c. posibits : xh-j = m ⊕ yh-j, for 2 ≤ j ≤ h, j≠h-1
d. unibit : x′0 = m

Hence, unibit x′0 is equal to 1 only when X+(R-1)=2n-1-1.
The complete circuit structure that realizes the above algorithm
is given in Fig. 4.

Example 2: Suppose that n=k×h=2×4=8 and X=153. Then
R=17, s = 0, m=0 and y=153+16+0=169=101010012.
According to Step II, X7 = 7y = 0, x6 = y6 = 0, x5 = y5 = 1,
x4 = y4 ⊕ y3 = 1, x′4 = y4 ∧ y3 = 0, X3 = m⊕ 3y = 0,
x2 = m⊕y2 = 0, x1 = y1 = 0, x0 = m⊕y0 = 1, and x′0 = m = 0, thus

04

01234567

xx
xxxXxxxX

X RNSSUT ′′
=− 00

00010011
= =

(-6)×24+(-8)×20 = |-104|257 = 153.

13

RNSSUTX −

X

| |

|

1−R

RNSSUTX −

||
X

Figure 4. Proposed modulo 2n+1 SUT-RNS forward converter

IV. REVERSE CONVERTERS
We present in this section efficient reverse converters of an

SUT-RNS encoded modulo 2n±1 number to its corresponding
binary encoding. We consider the two cases of moduli
separately.

A. Modulo 2n-1
In order to get the binary encoding X of an SUT-RNS

encoded modulo 2n-1 number XSUT-RNS, we need to add in
modulo 2n-1 the following 4 n-bit vectors, as shown in dot
notation in Fig. 5:

(a) the P=0xkh-2…x(k-1)h 0x(k-1)h-2…x(k-2)h ... 0xh-2…x0 posibits
vector.

(b) the negabits vector denoted as N. Vector N in modulo 2n-1
arithmetic is equal to N=Xkh-11…1 X(k-1)h-11…1 … Xh-11…1.
This is justified as follows: Due to the bias encoding, a negabit
ni with a weight equal to 2i represents a value equal to i

i n2− .

Hence,
121

1
1

121
1

1)2()12()2(
−=

−
−

−=
−

− ∑∑ −−=−=
nn

k

i
ih

ihn
k

i
ih

ih XXN .

Since, for every bit z it holds that zz =−1 , we conclude that
N = Xkh-11…1 X(k-1)h-11…1 … Xh-11…1, that is, it consists of k
h-bit patterns Xih-11…1, 1≤i≤k.

(c) the unibits vector denoted as U. Unibits can be treated as
doublebits or equivalently as posibits in the next higher bit
position, as long as we also consider a correction equal to -R.
Hence, U =0…0x′(k-1)h0 0…0x′(k-2)h 0 … 0…0x′00.

(d) the constant correction vector

1212
)12/()12(

−−
− −−−=−= nn

hkhRC = 1…10 … 1…10,

which consists of k h-bit patterns 1…10.

Instead of using a 4-operand modulo 2n-1 adder, we can merge
the 4 vectors in two and use only a 2-operand modulo 2n-1
adder. The posibits of P along with the negabits of N form an
n-bit vector denoted as PN. PN is actually the main part of the

Figure 5. Vector formation for modulo 2n-1 SUT-RNS reverse conversion

SUT-RNS encoded number. The remaining constant bits of P
and N along with the U vector and the constant C− vector can
be replaced by an n-bit vector PNUC− defined as
PNUC− = bn-1…b0, where 01)1(ihihihihhi xxxbb ′′′=−+ …… , 0≤i≤k-
1. Since x′0=0, the h least significant bits are equal to 01…10,
whereas the remaining (k-1)h bits are repeating h-bit patterns of

0... ihihih xxx ′′′ , with 1 ≤ i ≤ k-1. Hence, PN and PNUC− vectors
are driven in a modulo 2n-1 adder which derives the binary
encoding of XSUT-RNS, as shown in Fig. 6.

Example 3: Suppose that n=k×h=2×4=8 and
X=104=7×24-8×20. The SUT-RNS encoding of X is equal to

04

01234567

xx
xxxXxxxX

X RNSSUT ′′
=− 01

00011110
= . According

to the previous discussion PN=11100001 and
PNUC−=10000110. A modulo 255 adder (which is equivalent
to an end-around-carry binary adder) with PN and PNUC− as
inputs produces the value 01101000 at the output which is
equal to 104.

B. Modulo 2n+1
A similar approach can be used in the modulo 2n+1 case as

well. In order to get the binary encoding X of an SUT-RNS
encoded modulo 2n+1 number XSUT-RNS, we need to add in
modulo 2n+1 arithmetic 4 n-bit vectors (see Fig. 7): vectors P,
N and U for the posibits, negabits and unibits, respectively,
which are equal to those in the modulo 2n-1 case and a constant
correction vector C+ which in the case of modulo 2n+1 is equal
to

12
2

+
+ −= nRC . The constant term 2 is justified by the

Figure 6. Proposed modulo 2n-1 SUT-RNS reverse converter

14

RNSSUTX −

X

Figure 7. Vector formation for modulo 2n+1 SUT-RNS reverse conversion

fact that the negabits vector in modulo 2n-1 and the
corresponding negabits vector in modulo 2n+1 always differ by
2.

The 4 vectors can be merged in two: the PN vector which is
the main part of the SUT-RNS encoded number X and the
PNUC+ vector which depends on the transfer part of XSUT-RNS
and is equal to PNUC+=bn-1…b0, where

100001 xxxbbh ′′′=− …… and ,01)1(ihihihihhi xxxbb ′′′=−+ ……

1≤i≤k-1. The two n-bit vectors PN and PNUC+ are then driven
to an enhanced diminished-one modulo 2n+1 adder [19] that
produces the (n+1)-bit binary encoding of XSUT-RNS, as shown in
Fig. 8. We have to note that in PNUC+ a constant correction
term equal to -1 is also taken into account since a diminished-
one adder always increases the sum of its two input operands
by one.

Example 4: Let n, h, k and X have the same values as in the
previous example. The SUT-RNS encoding of X is equal to

04

01234567

xx
xxxXxxxX

X RNSSUT ′′
=− 01

00011110
= . Then

PN = 11100001 and PNUC+ = 10000111. An enhanced
diminished-one modulo 257 adder sums PN and PNUC+ and
produces the value 001101000 at its output which is equal to
104.

Figure 8. Proposed modulo 2n+1 SUT-RNS reverse converter

V. EVALUATION AND EXPERIMENTAL RESULTS
In this section we at first evaluate the forward and reverse

converters that were proposed in Sections III and IV,
respectively, and then, we present some experimental results
based on CMOS VLSI circuit implementations.

The SUT-RNS forward converters for both modulo 2n-1 and
2n+1 are based on an n-bit parallel-prefix structure. A few gates
are used to derive the sign bit s which is then added with an
extra prefix level and a level of 2-input XOR gates. Finally,
Step II of forward conversion requires some extra 2-input XOR
gates in parallel. Since the parallel-prefix structure has a
logarithmic delay and all remaining subcircuits have small
constant delays, we conclude that the forward converters are
very efficient in delay. The SUT-RNS reverse converters are
also very efficient since they are based on modulo 2n-1 or
diminished-one modulo 2n+1 adders whose input operands are
formed at a minimum delay of an inverter. Furthermore, both
the parallel-prefix structure in the forward converters and the
modulo adders in the reverse converters can be designed using
any desirable architecture.

We described in HDL forward and reverse converters for
both moduli cases and for several values of n, k and h. In the
forward converters case we considered a Kogge-Stone [20]
parallel prefix structure. In the reverse converters case we
considered modulo 2n-1 and diminished-one modulo 2n+1
adders that follow the architectures of [21] and [22],
respectively. After validating the correct operation of the HDL
descriptions via simulation, we synthesized them in a power-
characterized 90nm CMOS technology, using a standard delay
optimization script, and derived estimates for area, delay and
average power dissipation. The attained results, given in Table
II, indicate that the proposed converters are very fast and
require small area and power dissipation. Since we are not
aware of any other work on forward and reverse modulo 2n±1
SUT-RNS converters, no comparison with other proposals is
possible.

TABLE II. EXPERIMENTAL RESULTS

n k h

Forward Converters Reverse Converters
Area
(um2)

Delay
(ns)

Power
(mW)

Area
(um2)

Delay
(ns)

Power
(mW)

Modulo 2n-1
8 2 4 864 0.235 0.25 974 0.172 0.37

12 4 3 1462 0.270 0.50 1932 0.212 0.69
12 3 4 1457 0.269 0.43 1813 0.215 0.67
16 4 4 2218 0.278 0.62 2592 0.211 0.97
20 5 4 2554 0.313 0.70 3757 0.259 1.32
20 4 5 2485 0.307 0.61 3809 0.252 1.34
Modulo 2n+1
8 2 4 1191 0.250 0.29 1533 0.170 0.62

12 4 3 1559 0.285 0.47 2601 0.209 0.99
12 3 4 1467 0.287 0.37 2842 0.209 1.14
16 4 4 2345 0.292 0.59 3426 0.217 1.36
20 5 4 2777 0.331 0.73 5129 0.252 2.04
20 4 5 2706 0.320 0.61 5386 0.251 2.17

15

VI. CONCLUSIONS
Redundant number systems can be used to reduce the carry

propagation inside each channel in an RNS. SUT has been
proposed as a redundant high-radix encoding for RNS that can
improve the efficiency of BSD-based RNS since it can utilize
conventional arithmetic components such as full/half adders.
We have presented in this paper, for the first time in the open
literature, efficient forward and reverse converters for the SUT-
RNS encoding for the two most commonly used moduli cases,
that is, modulo 2n±1. The forward converters are based on
parallel-prefix binary adders and simple logic gates whereas
the reverse converters are based on parallel-prefix modulo 2n±1
adders and simple logic gates.

The incorporation of the proposed converters in the various
already proposed forward and reverse converters from/to
binary to/from RNS is currently under investigation. This will
enable to convert binary representations to SUT-RNS and vice
versa without using a residue representation as an intermediate
step.

REFERENCES
[1] P. V. Ananda Mohan, Residue Number Systems: Algorithms and

Architectures, Netherlands: Kluwer Academic Publishers, 2002.
[2] A. Omondi and B. Premkumar, Residue Number Systems: Theory and

Implementation, London: Imperial College Press, 2007.
[3] R. Chaves and L. Sousa, “RDSP: A RISC DSP based on Residue

Number System,” 6th Euromicro Symp. on Digital System Design , pp.
128–135, 2003.

[4] P. G. Fernandez and A. Lloris, “RNS-based implementation of 8x8 point
2D-DCT over field-programmable devices,” Electronics Letters, vol. 39,
no. 1, pp. 21-23, 2003.

[5] Y. Liu and E. Lai, “Moduli set selection and cost estimation for RNS-
based FIR filter and filter bank design,” Design Automation for
Embedded Systems, vol. 9, no. 2, pp. 123-139, 2004.

[6] G. Cardarilli, A. Nannarelli and M. Re, “Residue number system for
low-power DSP applications,” Asilomar Conference on Signals,
Systems and Computers, pp. 1412-1416, 2007.

[7] J. -C. Bajard and L. Imbert, “A full RNS implementation of RSA,” IEEE
Trans. on Computers, vol. 53, no. 6, pp. 769–774, 2004.

[8] U. Meyer-Baese, A. Garcia and F. Taylor, “Implementation of a
communications channelizer using FPGAs and RNS arithmetic,” VLSI
Signal Processing, vol. 28, no. 1-2, pp. 115-128, 2001.

[9] A. S. Madhukumar and F. Chin, “Enhanced architecture for Residue
Number System-based CDMA for high-rate data transmission,” IEEE
Trans. on Wireless Communications, vol. 3, no. 5, pp. 1363-1368, 2004.

[10] A. Avizienis, “Signed-digit representation for fast parallel arithmetic,”
IRE Trans. on Electronic Computers, vol. EC-10, pp. 389-400, 1961.

[11] G. Jaberipur, B. Parhami and M. Ghodsi, “Weighted two-valued digit-
set encodings: Unifying efficient hardware representation schemes for
redundant number systems,” IEEE Trans. on Circuits and Systems I, vol.
52, no. 7, pp. 1348-1357, 2005.

[12] G. Jaberipur and B. Parhami, “Stored-transfer representations with
weighted digit-set encodings for ultrahigh-speed arithmetic,” IET
Circuits Devices and Systems, vol. 1, no. 1, pp. 102-110, 2007.

[13] G. Jaberipur and B. Parhami, “Unified approach to the design of
modulo-(2n±1) adders based on signed-LSB representation of residues,”
IEEE Int. Symposium on Computer Arithmetic, pp. 57-64, 2009.

[14] A. Lindstrom, M. Nordseth, L. Bengtsson, and A. Omondi, “Arithmetic
circuits combining residue and signed-digit representations,” 8th Asia-
Pacific Computer Systems Architecture Conf., vol. 2823, pp. 246-257,
2003.

[15] S. Wei, “A new residue adder with redundant binary number
representation,” 6th Int. IEEE North-East Workshop on Circuits and
Systems, pp. 157-160, 2008.

[16] A. Persson and L. Bengtsson, “Forward and reverse converters and
moduli set selection in signed-digit residue number systems,” J. Signal
Processing Systems, vol. 56, no.1, pp. 1-15, 2009.

[17] S. Timarchi and K. Navi, “Efficient class of redundant Residue Number
System,” IEEE Int. Symposium on Intelligent Signal Processing, pp.
475-780, 2007.

[18] S. Timarchi and K. Navi, “Arithmetic circuits of redundant SUT-RNS,”
IEEE Trans. on Instrumentation and Measurement, vol. 58, no. 9, pp.
2959-2968, 2009.

[19] H. T. Vergos, D. Bakalis and C. Efstathiou, “Fast modulo 2n+1 multi-
operand adders and residue generators,” Integration, the VLSI Journal,
vol. 43, no. 1, pp. 42-48, 2010.

[20] P. M. Kogge and H. S. Stone, “A parallel algorithm for the efficient
solution of a general class of recurrence equations,” IEEE Trans. on
Computers, vol. 22, no. 8, pp. 786-792, 1973.

[21] L. Kalampoukas, D. Nikolos, C. Efstathiou, H. T. Vergos and J.
Kalamatianos, “High-speed parallel prefix modulo 2n-1 adders,” IEEE
Trans. on Computers, vol. 49, no. 7, pp. 673-680, 2000.

[22] H. T. Vergos, C. Efstathiou and D. Nikolos, “Diminished-one modulo
2n+1 adder design,” IEEE Trans. on Computers, vol. 51, no. 12, pp.
1389-1399, 2002.

16

