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Abstract—Stored Unibit Transfer (SUT) has been recently 
proposed as a redundant high-radix encoding for the channels of 
a Residue Number System (RNS) that can improve the efficiency 
of conventional redundant RNS. In this paper we propose 
modulo 2n±1 forward and reverse converters for the SUT-RNS 
encoding. The proposed converters are based on parallel-prefix 
binary or modulo adders and are therefore very efficient. 
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I.  INTRODUCTION  
Residue Number System (RNS) [1] [2] is a number system 

commonly adopted for speeding up computations in digital 
signal processing [3] [4] [5] [6], cryptography [7] and 
telecommunication applications [8] [9]. A non-positional RNS 
is defined by a set of L moduli, suppose {m1, …, mL} that are 
pair-wise relatively prime. Assume that |A|M denotes the 
modulo M residue of an integer A, that is, the least non-
negative remainder of the division of A by M. A has a unique 
representation in the RNS, given by the set {a1, …, aL} of 
residues, where 

imi Aa = . An operation ⊗ over an RNS is 

defined as (z1, …, zL) = (a1, …, aL) ⊗ (b1, …, bL), where 

imiii baz ⊗= . The computation of zi only depends on ai, bi, 

and mi and each zi is computed in parallel in a separate 
arithmetic unit often called a channel. Since each channel deals 
with narrow residues instead of wide numbers and since all 
channels operate in parallel, significant speedup over the binary 
may be achieved. RNSs built on 2n±1 moduli have received 
significant attention due to the efficient arithmetic circuits that 
have been proposed for them. Any carry propagation in an 
RNS is restricted inside each channel.  

Binary Signed-Digit (BSD) [10] has been proposed as a 
redundant, carry-free, number system where addition can be 
performed in constant time. The BSD number system 
represents each number with a set of digits in {-1, 0, +1}. Each 
digit requires two bits for its representation leading to a 
significant overhead in storage, processing and interconnection 
requirements. Hybrid redundant number systems, such as those 
with weighted two-valued digit set encodings [11] [12], have 
been proposed as an alternative that can limit the maximum 
length of carry propagation chains to any desired value and can 
lead to a wide representation range without the added costs 
associated with BSD. Furthermore, they can utilize 

conventional components such as full/half adders and can 
therefore produce highly efficient circuit implementations. 
Examples of such encodings are the Stored-Unibit Transfer 
(SUT) encoding [11] [12] and the Signed-LSB encoding [13]. 

Several attempts have been made to combine the parallel 
nature of RNS with the carry-free or carry-limited nature of 
redundant number systems. [14] [15] and [16] are among the 
most recent works that deal with the use of BSD inside each 
channel of an RNS in order to eliminate the intra-channel carry 
propagation. They propose efficient arithmetic circuits, such as 
adders and multipliers, for the modulo 2n±1 cases. The authors 
of [13] propose modulo 2n±1 adders based on the Signed-LSB 
encoding. In order to trade-off the area overhead of the BSD 
with the delay, [17] [18] propose the use of the SUT encoding 
for the modulo 2n±1 RNS channels and present SUT-RNS 
addition, subtraction and multiplication circuits. However, to 
the best of our knowledge, no architecture has been reported so 
far for converting a binary modulo 2n±1 number from/to its 
corresponding SUT-RNS encoding, making the arithmetic 
circuits proposed for SUT-RNS in [17] [18] inapplicable.  

In this paper we fill this gap by presenting forward and 
reverse converters for modulo 2n±1 SUT-RNS encoding. The 
proposed converters are based on parallel-prefix binary or 
modulo 2n±1 adders and some extra simple logic and are very 
efficient. 

The remaining of the paper is organized as follows. The 
next section presents an overview of the SUT-RNS encoding. 
Forward and reverse converters for modulo 2n±1 SUT-RNS 
channels are given in Sections III and IV, respectively. Section 
V evaluates the proposed circuits and presents some 
experimental results. Section VI concludes the paper. 

II. REDUNDANT HIGH-RADIX SUT-RNS 
Every SUT-encoded number is composed of SUT digits. 

Each SUT digit consists of two-valued digits (twits) of three 
types: posibits {0, +1}, negabits {-1, 0}, and unibits {-1, +1}. 
A posibit has a lower value equal to 0 whereas a negabit and a 
unibit have a lower value equal to -1. Furthermore, a posibit 
and a negabit use a gap size equal to 1 whereas a unibit uses a 
gap size equal to 2 [11]. All three twits require one bit for their 
representation and use bias encoding, that is, their lower value 
is encoded in binary with logical 0 whereas their upper value is 
encoded in binary with logical 1. The dot notations, symbolic 
notations and binary encodings of the twits are given in      
Table I.  
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TABLE I.  DOT NOTATION, SYMBOLIC NOTATION AND BINARY 
ENCODING OF TWITS 

Twit Dot notation Symbolic notation Lower 
value 

Upper 
value 

Negabit  Xi 0 (-1) 1   (0) 
Posibit  xi 0   (0) 1 (+1)
Unibit  x′i 0 (-1) 1 (+1)

 

SUT-RNS has been proposed as a redundant, high-radix, 
encoding for modulo 2n±1 numbers [17] [18]. Every SUT-
RNS-encoded number consists of k radix-2h SUT digits 
(n=k×h), where each SUT digit consists of (h+1) twits, that is, 
(h-1) posibits, 1 negabit and 1 unibit. The negabit along with 
the posibits represent the radix-2h main part [-2h-1, +2h-1-1] 
whereas the unibit represents the transfer part of the SUT digit. 
The symbolic and dot notation of a k-digit (Dk…D1) SUT-RNS 
number X are shown in Fig. 1. The maximum representable 
number is equal to )12()12(12 −−−+= hkhh

MAX
X whereas the 

minimum representable number is equal to 
)12()12()112( −−−−−= hkhh

MIN
X . For example, when n=6 

(k=2 and h=3), representable numbers are between -45 and 
+36. A modulo 2n+1 (2n-1) number X, X∈[0, 2n] (X∈[0, 2n-1] 
assuming a double representation of zero), can be encoded in 
SUT-RNS by utilizing the positive range of the SUT-RNS 
encoding for some values of X and the negative range for the 
remaining values. Assuming the values of n, k and h of the 
previous example, number 7 can be encoded as +7 in both 
moduli cases whereas number 37 can be encoded as -28 in 
modulo 26+1 since |37|65 = |-28|65 and can be encoded as -26 in 
modulo 26-1 since  |37|63 = |-26|63. 
 

D1D2Dk

Xkh-1xkh-2 … x(k-1)h .  .  .    X2h-1x2h-2 … xh Xh-1 xh-2  …  x0

x’(k-1)h x’h x’0 

(a)

(b)

. . . . . . . . . . . . 

 

Figure 1.   (a) Dot and (b) symbolic notation of a k-digit radix-2h SUT-RNS 
number X 
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Figure 2.  Positive and negative range of the SUT-RNS encoding 

III. FORWARD CONVERTERS 
In order to utilize the adder, subtractor and multiplier 

circuits that were proposed in [18] for SUT-RNS, one has to 
use forward converters to derive the SUT-RNS encodings of 
the input operands. In [18] no such circuits have been 
presented. [12] reported an algorithm for converting a signed 
two’s complement number to an SUT representation. However 
this algorithm cannot be used as is in the SUT-RNS encoding 
since in this case the input is a modulo 2n+1 or a modulo 2n-1 
unsigned number. We present in this section efficient forward 
converters of a modulo 2n±1 number to the SUT-RNS 
encoding. We consider the two cases of moduli separately. 

A. Modulo 2n-1 
Consider an n-bit modulo 2n-1 number X=xn-1…x0. The 

algorithm for forward conversion presented in [12] can 
correctly encode in SUT-RNS every value of X that lies in the 
positive range of the SUT-RNS encoding (see Fig. 2). 
However, for all values of X that are encoded in SUT-RNS in 
the negative range, a value decreased by one compared to the 
correct modulo 2n-1 value is produced since modulo 2n 
arithmetic is used instead and 

121212
11)12(2

−−−
−=−−−=− nnn XXX nn . Hence, for all the 

SUT-RNS encoded values of X that lie in the negative range, 
we have to increase the corresponding value of X by one in 
order to get the correct modulo 2n-1 value. 

The following two-step algorithm is a modification of the 
forward conversion algorithm of [12] that deals with the above-
mentioned problem and performs correct modulo 2n-1 forward 
SUT-RNS conversion: 

Step I: Compute y=X+R+s=y'+s, where y and           
R=(2kh-1)/(2h-1) denote n-bit operands, y'=X+R, and s denotes 
a sign indication bit whose value is equal to 0 when the value 
of X lies in the positive range of the SUT-RNS encoding and is 
equal to 1 when the value of X lies in the negative range. 

According to Fig. 2, 
⎩
⎨
⎧

≥+
<+

= −

−

1

1

2,1
2,0

n

n

RX
RX

s . Hence, sign s can 

be derived by the logical equation 11 −− ∨′= nn cys , where 1−′ny  
and cn-1 are the most significant bit and carry out of the (X+R) 
addition and ∨ denotes the logical OR operation. A 
straightforward solution for deriving the bits of y uses a binary 
adder for deriving y′ and a controllable incrementer for 
incorporating s. However, those two operations can be 
efficiently merged in a parallel-prefix-based adder (see Fig. 3). 
The X and R operands can be driven to a parallel-prefix 
structure that in log2n levels can derive the n carries              
(cn-1, …, c0) of X+R. Then, s can be derived by an XOR and an 
OR gate, as s = (hsn-1 ⊕ cn-2) ∨ cn-1, where hsn-1 = xn-1 ⊕ Rn-1 is 
the half-sum bit of the most significant bit position. An extra 
prefix level can then be used for adding the value of s and for 
producing a new set of carries (c′n-2, …, c′0). Finally, the n-bits 
of y can be derived by 2-input XOR gates. We have to note that 
since R is a constant that has a value equal to 1 in all bit 
positions with weights 2ih, 0≤i<k, and a value equal to 0 in all 
other bit positions, the parallel-prefix structure can be 
significantly simplified.  
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Figure 3.  Proposed modulo 2n-1 SUT-RNS forward converter 

 

Step II: Use the following logic equations [12] to transform 
the bits of y to the corresponding SUT-RNS encoding of X, 
denoted as XSUT-RNS, assuming that y-1=0 and that  ∧ denotes the 
logical AND operation, while z denotes the logical NOT 
operation on bit z: 

a. negabits :  Xih-1 =  1−ihy  for 1 ≤ i ≤ k 

b. posibit    :  xih   =  yih ⊕ yih-1   for 0 ≤ i ≤ k-1 
c. posibits  :  xih-j   =  yih-j for 1 ≤ i ≤ k and 2 ≤ j < h 
d. unibits    :  x′ih  = yih ∧ yih-1 ,  for 0 ≤ i ≤ k-1 

Step II implies that the unibit x′0 is always equal to 0. The 
complete circuit structure that realizes the above algorithm is 
given in Fig. 3 and is capable of dealing with both 
representations of zero in modulo 2n-1 arithmetic, that is, 0 and 
2n-1.  

Example 1: Suppose that n=k×h=2×4=8 and X=153. Then 
R=17, y′=170, s=1 and y=153+17+1=171=101010112. 
According to Step II, X7 = 7y  = 0, x6 = y6 = 0, x5 = y5 = 1,       
x4 = y4⊕y3 = 1, x′4 = y4∧y3 = 0, X3 = 3y  = 0, x2 = y2 = 0,           
x1 = y1 = 1, x0 = y0⊕y-1 = 1, and x′0 = y0∧y-1 = 0, thus 

04

01234567

xx
xxxXxxxX

X RNSSUT ′′
=− 00

00110011
= =                    

(-6)×24+(-6)×20 = |-102|255 = 153. 
  

B. Modulo 2n+1 
Consider now a (n+1)-bit modulo 2n+1 number           

X=xnxn-1…x0 ∈ [0, 2n]. The forward converter of [12] could be 
used to encode X in SUT-RNS. However, for all values of X 
that lie in the negative range of the SUT-RNS encoding an 
increased by one value compared to the correct one would be 
produced since 

121212
11)12(2

+++
+=++−=− nnn XXX nn . 

Hence, for all these values of X we have to decrease by one in 
order to get the correct modulo 2n+1 SUT-RNS encoding. 

The following algorithm is similar to the one presented 
previously for modulo 2n-1 and performs modulo 2n+1 SUT-
RNS forward conversion. 

Step I: Compute sRXy −+= sRX +−+= )1(  
syx n

n +′+= 2 , where y and R=(2kh-1)/(2h-1) denote n-bit 
operands, )1(

2
−+=′ RXy n , and s denotes the sign 

indication bit. According to Fig. 2, 
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The first two conditions can be identified by the logical 
equation s=y′n-1 ∨ cn-1 ∨ xn, where y′n-1 and cn-1 are the most 
significant bit and carry out of the )1(

2
−+ RX n addition, 

respectively. Note that s also incorporates the most significant 
bit of X, xn, in order to add the value xn2n. Hence, the n least 
significant bits of X and (R-1) are driven to an n-bit parallel-
prefix structure. Then s  is derived by an XOR and a NOR 
gate while an extra parallel prefix level is used to add the value 
of s  and produce y. 

Step II: Use the same logic equations as in the modulo     
2n-1 case to transform the bits of y to the corresponding SUT-
RNS encoding XSUT-RNS. The above algorithm produces the 
correct SUT-RNS encoding for all values of X except when 
X+(R-1)=2n-1-1 (third condition). In this case we still have to 
subtract one. This can be easily achieved by deriving a signal m 
indicating the case where X+(R-1)=2n-1-1 and correcting in this 
case the SUT-RNS encoding only of the least significant SUT 
digit. The logic equation for m is: 0...21 hsnhsnhsm ∧∧−∧−= , 
where hsn-1, …, hs0 denote the half-sum bits of the parallel-
prefix structure. m can be derived as fast as the carries of the 
parallel-prefix structure and hence it doesn’t increase the delay 
of the forward converter. The twits of the least significant SUT 
digit are then derived by the following logic equations:  

a. negabit :  Xh-1 =   m ⊕ 1−hy   
b. posibit :  x1   =   y1 
c. posibits : xh-j   =   m ⊕ yh-j, for 2 ≤ j ≤ h, j≠h-1 
d. unibit  : x′0  =   m 

Hence, unibit x′0 is equal to 1 only when X+(R-1)=2n-1-1. 
The complete circuit structure that realizes the above algorithm 
is given in Fig. 4. 

Example 2: Suppose that n=k×h=2×4=8 and X=153. Then 
R=17, s = 0, m=0 and y=153+16+0=169=101010012. 
According to Step II, X7 = 7y = 0, x6 = y6 = 0, x5 = y5 = 1,         
x4 = y4 ⊕ y3  = 1, x′4  = y4 ∧ y3 = 0, X3 = m⊕ 3y = 0,              
x2 = m⊕y2 = 0, x1 =  y1 = 0, x0 = m⊕y0 = 1, and x′0 = m = 0, thus 

04

01234567

xx
xxxXxxxX

X RNSSUT ′′
=− 00

00010011
= =              

(-6)×24+(-8)×20 = |-104|257 = 153. 
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Figure 4.  Proposed modulo 2n+1 SUT-RNS forward converter  

 

IV. REVERSE CONVERTERS 
We present in this section efficient reverse converters of an 

SUT-RNS encoded modulo 2n±1 number to its corresponding 
binary encoding. We consider the two cases of moduli 
separately. 

A. Modulo 2n-1 
In order to get the binary encoding X of an SUT-RNS 

encoded modulo 2n-1 number XSUT-RNS, we need to add in 
modulo 2n-1 the following 4 n-bit vectors, as shown in dot 
notation in Fig. 5:  

(a) the P=0xkh-2…x(k-1)h 0x(k-1)h-2…x(k-2)h ... 0xh-2…x0 posibits 
vector. 

(b) the negabits vector denoted as N. Vector N in modulo 2n-1 
arithmetic is equal to N=Xkh-11…1 X(k-1)h-11…1 … Xh-11…1. 
This is justified as follows: Due to the bias encoding, a negabit 
ni with a weight equal to 2i represents a value equal to i

i n2− . 

Hence,
121

1
1

121
1

1 )2()12()2(
−=

−
−

−=
−

− ∑∑ −−=−=
nn

k

i
ih

ihn
k

i
ih

ih XXN . 

Since, for every bit z it holds that zz =−1 , we conclude that               
N = Xkh-11…1 X(k-1)h-11…1 … Xh-11…1, that is, it consists of k 
h-bit patterns Xih-11…1, 1≤i≤k. 

(c) the unibits vector denoted as U. Unibits can be treated as 
doublebits or equivalently as posibits in the next higher bit 
position, as long as we also consider a correction equal to -R. 
Hence, U =0…0x′(k-1)h0 0…0x′(k-2)h 0 … 0…0x′00. 

(d) the constant correction vector 

1212
)12/()12(

−−
− −−−=−= nn

hkhRC = 1…10 … 1…10, 

which consists of k h-bit patterns 1…10. 

Instead of using a 4-operand modulo 2n-1 adder, we can merge 
the 4 vectors in two and use only a 2-operand modulo 2n-1 
adder. The posibits of P along with the negabits of N form an 
n-bit vector denoted as PN. PN is actually the  main part of  the 

 

Figure 5.  Vector formation for modulo 2n-1 SUT-RNS reverse conversion 

SUT-RNS encoded number. The remaining constant bits of P 
and N along with the U vector and the constant C− vector can 
be replaced by an n-bit vector PNUC− defined as             
PNUC− = bn-1…b0, where 01)1( ihihihihhi xxxbb ′′′=−+ …… , 0≤i≤k-
1. Since x′0=0, the h least significant bits are equal to 01…10, 
whereas the remaining (k-1)h bits are repeating h-bit patterns of 

0... ihihih xxx ′′′ , with 1 ≤ i ≤ k-1. Hence, PN and PNUC− vectors 
are driven in a modulo 2n-1 adder which derives the binary 
encoding of XSUT-RNS, as shown in Fig. 6. 

Example 3: Suppose that n=k×h=2×4=8 and       
X=104=7×24-8×20. The SUT-RNS encoding of X is equal to 

04

01234567

xx
xxxXxxxX

X RNSSUT ′′
=− 01

00011110
= . According 

to the previous discussion PN=11100001 and              
PNUC−=10000110. A modulo 255 adder (which is equivalent 
to an end-around-carry binary adder) with PN and PNUC− as 
inputs produces the value 01101000 at the output which is 
equal to 104. 

B. Modulo 2n+1 
A similar approach can be used in the modulo 2n+1 case as 

well. In order to get the binary encoding X of an SUT-RNS 
encoded modulo 2n+1 number XSUT-RNS, we need to add in 
modulo 2n+1 arithmetic 4 n-bit vectors (see Fig. 7): vectors P, 
N and U for the posibits, negabits and unibits, respectively, 
which are equal to those in the modulo 2n-1 case and a constant 
correction vector C+ which in the case of modulo 2n+1 is equal 
to 

12
2

+
+ −= nRC .  The  constant  term  2  is   justified  by  the  

Figure 6.  Proposed modulo 2n-1 SUT-RNS reverse converter  
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Figure 7.  Vector formation for modulo 2n+1 SUT-RNS reverse conversion 

fact that the negabits vector in modulo 2n-1 and the 
corresponding negabits vector in modulo 2n+1 always differ by 
2. 

The 4 vectors can be merged in two: the PN vector which is 
the main part of the SUT-RNS encoded number X and the 
PNUC+ vector which depends on the transfer part of XSUT-RNS 
and is equal to PNUC+=bn-1…b0, where 

100001 xxxbbh ′′′=− …… and ,01)1( ihihihihhi xxxbb ′′′=−+ ……      

1≤i≤k-1.  The two n-bit vectors PN and PNUC+ are then driven 
to an enhanced diminished-one modulo 2n+1 adder [19] that 
produces the (n+1)-bit binary encoding of XSUT-RNS, as shown in 
Fig. 8. We have to note that in PNUC+ a constant correction 
term equal to -1 is also taken into account since a diminished-
one adder always increases the sum of its two input operands 
by one.  

Example 4: Let n, h, k and X have the same values as in the 
previous example. The SUT-RNS encoding of X is equal to 

04

01234567

xx
xxxXxxxX

X RNSSUT ′′
=− 01

00011110
= . Then         

PN = 11100001 and PNUC+ = 10000111. An enhanced 
diminished-one modulo 257 adder sums PN and PNUC+ and 
produces the value 001101000 at its output which is equal to 
104. 

 

 

 

 

 

 

 

Figure 8.  Proposed modulo 2n+1 SUT-RNS reverse converter  

  

V. EVALUATION AND EXPERIMENTAL RESULTS 
In this section we at first evaluate the forward and reverse 

converters that were proposed in Sections III and IV, 
respectively, and then, we present some experimental results 
based on CMOS VLSI circuit implementations. 

The SUT-RNS forward converters for both modulo 2n-1 and 
2n+1 are based on an n-bit parallel-prefix structure. A few gates 
are used to derive the sign bit s which is then added with an 
extra prefix level and a level of 2-input XOR gates. Finally, 
Step II of forward conversion requires some extra 2-input XOR 
gates in parallel. Since the parallel-prefix structure has a 
logarithmic  delay  and  all  remaining   subcircuits  have  small 
constant delays, we conclude that the forward converters are 
very efficient in delay. The SUT-RNS reverse converters are 
also very efficient since they are based on modulo 2n-1 or 
diminished-one modulo 2n+1 adders whose input operands are 
formed at a minimum delay of an inverter.  Furthermore, both 
the parallel-prefix structure in the forward converters and the 
modulo adders in the reverse converters can be designed using 
any desirable architecture. 

We described in HDL forward and reverse converters for 
both moduli cases and for several values of n, k and h. In the 
forward converters case we considered a Kogge-Stone [20] 
parallel prefix structure. In the reverse converters case we 
considered modulo 2n-1 and diminished-one modulo 2n+1 
adders that follow the architectures of [21] and [22], 
respectively. After validating the correct operation of the HDL 
descriptions via simulation, we synthesized them in a power-
characterized 90nm CMOS technology, using a standard delay 
optimization script, and derived estimates for area, delay and 
average power dissipation. The attained results, given in Table 
II, indicate that the proposed converters are very fast and 
require small area and power dissipation. Since we are not 
aware of any other work on forward and reverse modulo 2n±1 
SUT-RNS converters, no comparison with other proposals is 
possible.  

 

TABLE II.  EXPERIMENTAL RESULTS 

n k h 

Forward Converters Reverse Converters 
Area 
(um2) 

Delay 
(ns) 

Power 
(mW) 

Area 
(um2) 

Delay 
(ns) 

Power 
(mW) 

Modulo 2n-1 
8 2 4 864 0.235 0.25 974 0.172 0.37 

12 4 3 1462 0.270 0.50 1932 0.212 0.69 
12 3 4 1457 0.269 0.43 1813 0.215 0.67 
16 4 4 2218 0.278 0.62 2592 0.211 0.97 
20 5 4 2554 0.313 0.70 3757 0.259 1.32 
20 4 5 2485 0.307 0.61 3809 0.252 1.34 
Modulo 2n+1 
8 2 4 1191 0.250 0.29 1533 0.170 0.62 

12 4 3 1559 0.285 0.47 2601 0.209 0.99 
12 3 4 1467 0.287 0.37 2842 0.209 1.14 
16 4 4 2345 0.292 0.59 3426 0.217 1.36 
20 5 4 2777 0.331 0.73 5129 0.252 2.04 
20 4 5 2706 0.320 0.61 5386 0.251 2.17 
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VI. CONCLUSIONS 
Redundant number systems can be used to reduce the carry 

propagation inside each channel in an RNS. SUT has been 
proposed as a redundant high-radix encoding for RNS that can 
improve the efficiency of BSD-based RNS since it can utilize 
conventional arithmetic components such as full/half adders. 
We have presented in this paper, for the first time in the open 
literature, efficient forward and reverse converters for the SUT-
RNS encoding for the two most commonly used moduli cases, 
that is, modulo 2n±1. The forward converters are based on 
parallel-prefix binary adders and simple logic gates whereas 
the reverse converters are based on parallel-prefix modulo 2n±1 
adders and simple logic gates. 

The incorporation of the proposed converters in the various 
already proposed forward and reverse converters from/to 
binary to/from RNS is currently under investigation. This will 
enable to convert binary representations to SUT-RNS and vice 
versa without using a residue representation as an intermediate 
step.  
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