
A Family of Area-Time Efficient Modulo 2n + 1 Adders

H. T. Vergos
Computer Engineering & Informatics Dept.,

University of Patras, 26500, Rio, Greece.

Abstract—A family of diminished-1 modulo 2n + 1 adders is
proposed in this manuscript. All members of the family use a
sparse carry computation unit for deriving only some of the
carries in log2 n prefix levels, while all the rest carries are
computed in an extra one. The proposed adders offer significant
area and power savings compared to earlier proposals, while
maintaining a high operation speed.

I. INTRODUCTION

A modulo 2n+1 adder is an important arithmetic component
for a variety of applications ranging from random number
generation and cryptography up to convolution / correlation
computation without rounding and truncation error. It is also a
vital part of almost every residue number system (RNS). Most
commonly, the diminished-1 representation is used for the
adder inputs and output. A diminished-1 adder is equivalent
to an inverted end-around carry (EAC) adder [1], [2]. In [1]
diminished adders have been proposed that make use of a
parallel-prefix carry computation unit that can either follow
the Ladner-Fischer (LF) or the Kogge-Stone (KS) algorithm
along with an extra prefix level for handling the inverted EAC.
Figure 1 presents the proposal of [1] by means of a prefix
graph. The operation of the different nodes used in the graph is
also given. The well-known carry generate, gi, carry propagate,
pi and half-sum hi bits are used in these nodes. In [2] it
has been shown that the recirculation of the inverted EAC
can be performed within the existing prefix levels, that is, in
parallel with the carries’ computation. Therefore, the need of
an extra prefix level is canceled. Figure 2 presents the proposal
of [2]. It uses a parallel-prefix computation unit that for several
carries needs a double computation tree. One tree is used to
associate generate and propagate signals in their normal form,
whereas the second for associating the complemented form
of them. By comparing Figures 1 and 2 it becomes obvious
that the increased speed of [2] comes at the penalty of heavily
increased cell and interconnection area. The same is also true
for the full parallel prefix (FPP) and reduced area parallel
prefix (RAPP) architectures proposed in [3], that follow a
similar to [2] prefix algorithm, but for Ling carries.

II. PROPOSED DIMINISHED ADDERS

The proposed adders stem from considering the proposals
of [1] and [2], as the two end cases of the number of
diminished addition carries that are computed within the first
log2 n prefix levels. In the first case, only one diminished-
1 carry is computed within log2 n prefix levels, while in the
second case every carry is computed. The proposed adders are
derived considering the alternative of computing only some

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

s15 s14 s13 s12 s11 s10 s9 s8 s7 s6 s5 s4 s3 s2 s1 s0

ai

bi

gi

hi

pi
(g,p)

(g΄,p΄)
(g+p·g΄, p·p΄)

hi
c
*
i-1

si

Fig. 1. Diminished-1 modulo 216 + 1 adder of [1].

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

s1s2s3s4s5s6s7 s0s8s9s10s11s12s13s14s15

ai

bi

hi = ai ⊕ bi
gi = ai • bi
pi = ai + bi
pi = ai + bi
gi = ai • bi

Fig. 2. Diminished-1 modulo 216 + 1 adder of [2].

of the carries within the first log2 n prefix levels. They are
based on showing that the modulo 2n+1 carry at bit position
i + 1, c⋆i+1, can be computed based on c⋆i and available
generate and propagate terms. More specifically it can be
shown that (the proof is omitted due to space limitations)
c⋆i+1 = gi+1 + pi+1 · c⋆i . This reveals that the next carry of
the diminished addition can be computed straightforwardly,
by associating in a prefix operator the (gi+1, pi+1) pair of
generate and propagate terms and the carry of the previous
position. Since c⋆i+2 can be similarly computed using c⋆i+1,
which as before can be computed based on c⋆i , it becomes
obvious that we can compute every carry c⋆i+k of the dimin-
ished addition associating c⋆i and the (gk : i+1, pk : i+1) pair of
group generate and propagate terms in a prefix operator. As
a result, we can compute in log2 n prefix levels any number
of the diminished addition carries and then use as many of
them as we wish to compute the rest in a further prefix level.
In this way a whole family of diminished adders is derived.
While all adders of the family have a carry computation unit

2010 IEEE Annual Symposium on VLSI

978-0-7695-4076-4/10 $26.00 © 2010 IEEE

DOI 10.1109/ISVLSI.2010.35

442

TABLE I
EXPERIMENTAL RESULTS FOR DIMINISHED-1 ADDERS

[1] LF [1] KS [2] [4]
n Delay Area Power A× T 2 Delay Area Power A× T 2 Delay Area Power A× T 2 Delay Area Power A× T 2

4 299 768.37 0.245 1.29 298 761.55 0.226 1.27 260 790.66 0.240 1.00 N/A
8 371 1671.57 0.574 1.35 369 1978.23 0.682 1.58 324 2023.46 0.665 1.25 350 1513.00 0.456 1.09
16 431 3805.50 1.198 1.54 445 4656.65 1.562 2.01 388 5168.50 1.807 1.70 411 3746.26 1.141 1.38
32 509 8343.34 2.594 1.49 544 11368.73 3.962 2.33 460 13152.81 4.870 1.92 492 7767.00 2.503 1.30

[3] FPP [3] RAPP Prop-n
2

Prop-n
4

n Delay Area Power A× T 2 Delay Area Power A× T 2 Delay Area Power A× T 2 Delay Area Power A× T 2

4 N/A N/A 286 650.96 0.182 1.00 293 677.77 0.198 1.09
8 302 1952.76 0.629 1.05 335 1748.09 0.514 1.15 342 1499.52 0.468 1.03 346 1421.76 0.429 1.00
16 370 5118.35 1.711 1.53 413 4650.92 1.558 1.73 403 3289.95 1.057 1.17 397 2906.73 0.860 1.00
32 442 14986.88 5.354 2.02 481 12054.81 4.322 1.93 471 7799.13 2.594 1.20 463 6750.10 2.080 1.00

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

s1s2s3s4s5s6s7 s0s8s9s10s11s12s13s14s15

Fig. 3. Prop-n
2

diminished-1 modulo 216 + 1 adder.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

s1s2s3s4s5s6s7 s0s8s9s10s11s12s13s14s15

Fig. 4. Prop-n
4

diminished-1 modulo 216 + 1 adder.

composed of log2 n+1 prefix levels, each has its own fan-out
requirements and cell and interconnection area. The notation
Prop-k is hereafter used, to denote the proposed diminished-1
modulo 2n +1 adders in which k out of the total n carries of
the diminished addition are computed in the first log2 n prefix
levels. Under this definition, the adders proposed in [1] are
the Prop-1, while the adders of [2] are the Prop-n members of
the family. Figures 3 and 4 present the proposed Prop-n2 and
Prop-n4 diminished adders. In the Prop-n2 adder case only the
odd numbered carries are computed in log2 n prefix levels,
while the even numbered ones in the last prefix level. This
adder offers a fan-out equal to 2 and has a similar structure
to the area-time efficient adders derived by the Han-Carlson
algorithm for integer addition. The Prop-n4 adder on the other
hand has a fan-out equal to 4 but requires significantly less
prefix operators along with their interconnections than the
Prop-n2 adder. It is noted that the elimination of several prefix
operators also removes their associated interconnections. As a
result the wiring complexity is also significantly reduced.

III. COMPARISONS

The proposed diminished adders were quantitatively com-
pared against the proposals of [1]–[4] for n = 4, 8, 16 or 32
by implementations in a 90nm technology. Table I lists the
attained results. Delay results are given in ps, area results
in µm2, and average power results in mW . The proposed
family of adders outperforms the earlier proposals of [1]
and [4] in delay, area and average power consumption terms.
They also outperform the adders designed according to the
RAPP architecture of [3] in all terms in the two widest
examined cases. On the other hand, they can not reach the
speed of the adders proposed in [2] and the ultimate speed
of the FPP adders [3]. However, in both these proposals,
this level of speed performance is achieved at a very high
area and average power consumption price. More specifically,
the totally parallel-prefix adders of [2] require from 21% up
to 95% more implementation area and consume from 32%
up to 134% more power than the proposed adders, while
the FPP adders of [3] require from 37% up to 122% more
implementation area and consume from 47% up to 157% more
power. As a result, the proposed adders are the most efficient
of all examined architectures when the area × delay2 (A×T 2)
is considered (normalized values are listed in each case of
Table I with respect to the best offered). Under this metric,
the proposed adders are also more efficient than the LF and
the KS adders of [1] by 29% up to 54% and by 27% up to
132%, respectively. They also outperform the adders of [2] by
up to 92%, the adders of [4] by up to 32% and the FPP and
RAPP proposals of [3] by up to 102% and 93%, respectively.

REFERENCES

[1] R. Zimmerman, “Efficient VLSI Implementation of Modulo (2n ± 1)
Addition and Multiplication,” in Proc. of the 14th IEEE Symposium on
Computer Arithmetic, April 1999, pp. 158–167.

[2] H. T. Vergos, C. Efstathiou, and D. Nikolos, “Diminished-One Modulo
2n +1 Adder Design,” IEEE Trans. Comput., vol. 51, no. 12, pp. 1389–
1399, December 2002.

[3] H. T. Vergos and C. Efstathiou, “Efficient Modulo 2n + 1 Adder
Architectures,” Integration, the VLSI Journal, vol. 42, no. 2, pp. 149–
157, February 2009.

[4] C. Efstathiou, H. T. Vergos, and D. Nikolos, “Modulo 2n ± 1 Adder
Design Using Select Prefix Blocks,” IEEE Trans. Comput., vol. 52, no. 11,
pp. 1399–1406, November 2003.

443

