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ABSTRACT 

Two novel architectures for designing modulo 2n-1 squarers 
are given. The first one does not perform any encoding on 
the input operand, while the second one uses Booth-
encoding. Pre-layout estimates indicate that both 
architectures result in area and/or delay efficient modulo   
2n-1 squarers. The non-encoded modulo squarers are more 
suitable for small values of n while the Booth-encoded 
modulo squarers are more suitable for medium and large 
values of n.   
 

Index Terms— Squaring operation, modulo 2n-1 
arithmetic circuits, residue number system. 
 

1. INTRODUCTION 
Squaring is an operation met very often in digital signal 
processing applications, such as vector quantization [1], 
image compression and equalization [2] [3] and mean 
square error estimation. Several design approaches [4-7] 
have been proposed in the past to increase the performance 
of binary squarers. 

Residue arithmetic has been also used in digital 
computing systems for many years. A Residue Number 
System (RNS) has been adopted in the design of several 
digital systems [8] [9], such as digital signal processors 
[10], [11], FIR filters [12-14], Discrete Cosine Transform 
processors [15] and communication components [16-18].  

In an RNS, a number X is represented as a set of 
residues (X1, X2, ..., XM), where Xi = X mod mi (hereafter 
denoted by 

imi XX = ). The mis, with Mi ≤≤1 , are pair-

wise relative prime integers and compose the base of the 
RNS.  Every operation, suppose o , is executed in parallel 
on the corresponding residues of the two operands over the 
corresponding modulo arithmetic and produces a new set of 
residues. That is, ),,,( 21 MZZZYXZ Ko == is computed 
as:  
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Since each Zi is computed in a distinct arithmetic unit 
(commonly used channel) and its computation depends only 

on Xi, Yi and mi, all channel computations can be performed 
in parallel without the need of carry propagation among the 
channels, leading to significant speedup over the 
corresponding binary operations. Three-moduli bases of the 
form {2n-1, 2n, 2n+1} have received significant attention, 
mainly due to the existence of very efficient combinational 
converters from/to the binary system. Therefore, the design 
of efficient modulo arithmetic components for the above-
mentioned moduli is vital in RNS-based applications. 

Several approaches can be used for designing efficient 
modulo squarers. For small values of moduli, either direct 
realizations of the minimized logic functions [19] or look-
up tables can be utilized. However, these approaches are 
inefficient for medium or large values of moduli. Another 
solution is to use modulo multipliers whose inputs are 
driven by the same operand. The resulting modulo squarers 
however are unnecessarily complex and slow. Another 
approach is to derive the partial products required for the 
modulo squaring operation and utilize an array or tree 
adder-based approach to sum them. During the last years, 
several architectures based on the last approach have been 
presented for the most commonly used moduli, that is, 2n+1 
[19-21] and 2n-1 [19] [22]. In the 2n-1 moduli case, both 
architectures of [19] and [22] result in the same modulo 
squarers. However, none of them uses the Booth-encoding 
technique, which is commonly used in binary multipliers 
and squarers in order to reduce the number of partial 
products.    

In this paper, we present two novel architectures for 
designing efficient non-encoded and Booth-encoded 
modulo 2n-1 squarers. The proposed non-encoded modulo 
2n-1 squarers rely on the work of [6] for binary squarers and 
offer a reduced partial products matrix and reduced 
implementation area compared to the modulo squarers of 
[19] [22]. The proposed Booth-encoded modulo 2n-1 
squarers follow the Booth-folding technique proposed for 
binary squarers in [7] and can perform modulo squaring 
significantly faster compared to the modulo squarers that 
can be derived by the Booth-encoded modulo 2n-1 
multipliers of [23]. 

The rest of the paper is organized as follows: The 
proposed  modulo 2n-1 squaring  architectures are derived in 
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214 213 212 211 210 29 28 27 26 25 24 23 22 21 20 
       70aa  60aa  50aa  40aa  30aa  20aa  10aa  00aa  
      71aa  61aa  51aa  41aa  31aa  21aa  11aa  01aa   
     72aa  62aa  52aa  42aa  32aa  22aa  12aa  02aa    
    73aa  63aa  53aa  43aa  33aa  23aa  13aa  03aa     
   74aa  64aa  54aa  44aa  34aa  24aa  14aa  04aa      
  75aa  65aa  55aa  45aa  35aa  25aa  15aa  05aa       
 76aa  66aa  56aa  46aa  36aa  26aa  16aa  06aa        

77aa  67aa  57aa  47aa  37aa  27aa  17aa  07aa         
 

Fig. 1.  Initial partial products matrix for the A2 term in the modulo 28-1 case.   
 

214 213 212 211 210 29 28 27 26 25 24 23 22 21 20 
      70aa  60aa  50aa  40aa  30aa  20aa  10aa   0a  
     71aa  61aa  51aa  41aa  31aa  21aa   1a    
    72aa  62aa  52aa  42aa  32aa   2a      
   73aa  63aa  53aa  43aa   3a        
  74aa  64aa  54aa   4a          
 75aa  65aa   5a            

76aa   6a              

7a                
 

Fig. 2.  Folded partial products matrix for the A2 term in the modulo 28-1 case.  
 
 Section 2. Section 3 presents qualitative and quantitative 
comparison results. Finally, conclusions are drawn in the 
last section. 
 

2. MODULO 2n -1 SQUARERS 
In this section we present two architectures for designing 
modulo 2n-1 squarers. The first subsection deals with non-
encoded squarers whereas the second subsection deals with 
Booth-encoded squarers. 
 
2.1. Non-encoded modulo 2n-1 squarers 
Let 01 aaA n L−=  be the n-bit input operand of the modulo 

2n-1 squarer, with 120 −<≤ nA . Then, the output is equal 
to: 
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For the clarity of presentation, the n=8 case is 
considered in the following. The derived methodology 
however can be straightforwardly applied to any other value 
of n. The partial products matrix required for the squaring 
term of relation (1), when n=8, is given in Figure 1. Since 

iii aaa =  and jiijji aaaaaa 2=+ , the matrix of Figure 2 
can be used equivalently.  

An n-bits wide matrix can then be derived for the 
modulo squaring operation by repositioning each partial 
product bit, suppose x, that has a weight larger than 2n-1 
taking into account that:  

1212
22

−−

+ = nn

ini xx     (2) 

Figure 3 presents the 8-bits wide matrix that is derived as 
the result of repositioning every x bit that has a weight equal 
to 2i+8, i=0,...,6, to the column with weight 2i. The matrix 
consists of 36 partial product bits and the maximum height 
among all columns is equal to 6. This is the partial products 
matrix also used in the architectures of [19] and [22]. 
 

27 26 25 24 23 22 21 20 

3a 2a  1a   0a
60aa 50aa 40aa 30aa 20aa  10aa   70aa
51aa 41aa 31aa 21aa   71aa 61aa
42aa 32aa    72aa  62aa 52aa

    73aa  63aa  53aa 43aa
   74aa  64aa  54aa   4a  
  75aa 65aa   5a    
 76aa  6a      
 7a        

 

Fig. 3.  Initial partial products matrix for the modulo 28-1 squarer.  
 



27 26 25 24 23 22 21 20 

32aa  32aa  21aa  21aa  10aa  10aa  70aa 70aa
60aa  50aa  40aa  30aa  20aa     

51aa  41aa  31aa     71aa 61aa
42aa      72aa  62aa 52aa

    73aa  63aa  53aa  
   74aa  64aa   43aa 43aa
  75aa   54aa  54aa    
  65aa  65aa      

76aa  76aa        
 

Fig. 4.  Modified partial products matrix for the modulo 28-1 squarer.  
 

27 26 25 24 23 22 21 20 
2,3,4s  1,2,3c  1,2,3s  0,1,2c  0,1,2s  7,0,1c  7,0,1s 2,3,4c
6,7,0s  5,6,7c  5,6,7s  4,5,6c  4,5,6s  3,4,5c  3,4,5s 6,7,0c
51aa  50aa  40aa  30aa  73aa  72aa  62aa 61aa

 41aa   74aa   63aa   52aa
 

Fig. 5.  Final partial products matrix for the modulo 28-1 squarer.  
 

Furthermore, by applying [5] that: 
k

ji
k

ji
k

iji aaaaaaa 2)(2)(2)( 1 +=+ +   (3) 
n=8 times in the partial product matrix of Figure 3 we derive 
the partial products matrix of Figure 4, which also has 36 
partial product bits, but a reduced maximum height equal to 
5. Considering [6] that: 
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where )(,, kjikji aaac ∨=  and kjikji aaas )(,, ⊕= (the ∨ and 

⊕ symbols denote logical OR and XOR operations, 
respectively), we can further reduce the total number of 
partial product bits. Relation (4) indicates that the addition 
of three partial product bits in adjacent columns can be 
replaced by two pre-calculated partial product bits. n=8 such 
triplets exist in Figure 4. Each one is uniquely shaded in 
Figure 4. The grouping of bits 32aa and 42aa  ( 76aa  and 

60aa ) that have weights equal to 27 with the bit 43aa  ( 70aa ) 
that has a weight equal to 20 can be justified due to the fact 
that 

12

0

12
22

−−
= nn xx n . Hence, bit 43aa  ( 70aa ) can be 

treated as having weight equal to 28 and the 2,3,4c  ( 6,7,0c ) bit 
resulting from relation (4), which also has a weight equal to 
28 can be driven back to the column with weight 20 due to 
the same reason.  

After the above transformations, the partial products 
matrix of Figure 5 is attained for 

12

2
8 −

A . The number of 

required partial product bits has been reduced from 36 to 28 
while in parallel the maximum height of the columns has 
been reduced from 6 to 4, at the cost of requiring the kjis ,,  

and kjic ,,  bits of relation (4). 

According to the previous analysis, the corresponding 
circuit of a modulo 28-1 squarer utilizes: (a) 8 blocks for 
deriving the kjis ,,  and kjic ,,  bits of relation (4), (b) some 
end-around-carry carry save adders, composed of full adders 
and half adders, in order to reduce the height of each column 
of Figure 5 to 2, that is, in order to derive two final 8-bit 
summands, and (c) one parallel modulo 28-1 adder (which is 
equivalent to a 1’s complement binary adder) to add the two 
final summands and derive the result.  

 

 
2.2. Booth-encoded modulo 2n-1 squarers 
A common method used in multipliers and squarers for 
reducing the number of partial products is to use the 
encoding of the modified Booth algorithm. Let 

01 aaA n L−=  be the n-bit input operand of the modulo 2n-1 
squarer as before. We will concentrate our analysis on even 
values of n, which is the most common case.  

Taking into account that 
12 −

= nAA , we have [23] that: 
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where }2,1,0,1,2{2 12212 ++−−∈++−= −+ iiii aaaA  and 

11 −− = naa . Relation (5) indicates that we can partition 
operand A into 3-bit groups in order to encode A in modulo 
2n-1 arithmetic.  

Efficient binary squarers that use a Booth-encoded 
operand have been recently proposed in [7]. Even greater 
area and delay efficiency was achieved by a folding 
technique. Both these techniques are explored in the 
following for deriving an efficient Booth-folded modulo 2n-
1 squarer architecture. For the clarity of presentation, we 
again concentrate on the n=8 case, but the generalization is 
straightforward. When n=8, from (5) we have that:  

12

0
0

2
1

4
2

6
3

12

3

0

2
8

8

22222
−

−=

+++== ∑ AAAAAA
i

i
i

  

and 

12

3

0

2
3

0

2

1212

3

0

2

12

3

0

2
1212

2

8

888

88

22

22

−==

−−=−=
−−

∑∑

∑∑

×=

×=×=

i

i
i

i

i
i

i

i
i

i

i
i

AA

AAAAA
 

(6) 
 

Thus, the square of A modulo 28-1 can be computed using 
the Booth-encoded parts of A instead of its bits. The 
resulting partial products matrix is shown in Figure 6 and 
since jiijji AAAAAA 2=+ , it is equivalent to that of 

Figure 7. Let iii AAC ×= , 3,...,0=i  and 

∑
+=

−−=
3

1

)1(22
ik

ik
iki AAP , 2,...0=i  as defined in [7]. 

Obviously, Ci terms are unsigned numbers. Since they 
assume only one of the three  values {0, 1, 4},  they  can  be 



212 210 28 26 24 22 20 
   03 AA 02 AA  01AA  00 AA
  13 AA  12 AA  11AA  10 AA   
 23 AA  22 AA  21AA 20 AA    

33 AA  32 AA  31AA  30 AA    
 

Fig. 6.  Initial partial products matrix for the Booth-encoded modulo 28-1 
squarer.  
 

212 210 28 26 24 22 20 
032 AA  022 AA  012 AA 00 AA

  132 AA 122 AA  11AA    
 232 AA 22 AA     

33 AA       
 

Fig. 7.  Folded partial products matrix for the Booth-encoded modulo 28-1 
squarer.  

214 213 212 211 210 29 28 27 26 25 24 23 22 21 20 
     6,0P  5,0P  4,0P  3,0P  2,0P  1,0P  0,0P  2,0C   0,0C  
   4,1P  3,1P  2,1P  1,1P  0,1P  2,1C   0,1C      
 2,2P  1,2P  0,2P  2,2C   0,2C          

2,3C   0,3C              
 

Fig. 8.  Booth-folded partial products matrix for the modulo 28-1 squarer.  
 

represented by 3 bits, with the middle bit always equal to 0. 
On the other hand, the Pi terms represent signed two’s 
complement numbers. They can be easily computed using a 
simple one’s complement circuit as described in [7]. In the 
case of n=8, P0, P1, and P2 have 7, 5, and 3 bits, 
respectively. Denoting the j-th bit of Ci and Pi as Ci,j and Pi,j, 
respectively, Figure 8 presents the bits of the Pi and Ci terms 
that have to be summed for computing the multiplication 
term of relation (6).  

Starting from the matrix of Figure 8, one has to 
reposition every bit with weight larger than 27 to a column 
with weight less than or equal to 27 for deriving a 8-bits 
wide matrix for the modulo squaring operation. Since C2 
and C3 are unsigned numbers, the C2,2 and C2,0 (C3,2 and 
C3,0) partial product bits can be easily moved from columns 
with weights 210 and 28 (214 and 212) to columns with 
weights 22 and 20 (26 and 24), respectively, due to (2). 
However, the Pi,j partial product bits have to be treated 
differently since the Pi terms represent signed two’s 
complement numbers. Let 01 xxX k L−=  denote a signed 
two’s complement number with k bits (k>n). Obviously, 

1−kx  represents the sign bit of X. Then, it holds that: 
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and thus, for computing 
12 −nX , we have to: (a) move all 

bits of X with weights larger than 2n-1 (except the sign bit) to 
the corresponding columns with weights less than or equal 
to 2n-1, according to relation (2), and (b) add an n-bits 
correction term equal to 1111 1 KK −kx , where 1−kx  has a 

weight equal to nk 12 − . This correction term can be justified 
as follows: If 0≥X , then xk-1=0 and 
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kx . If 0<X , then xk-1=1 and 
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27 26 25 24 23 22 21 20 
 2,1C   0,1C   2,0C   0,0C
 2,3C  0,3C  2,2C   0,2C

4,0P  3,0P  2,0P  1,0P  0,0P    5,0P  

0,1P      3,1P  2,1P  1,1P  

   1,2P  0,2P     
1 1 2,2P  1 4,1P  1 6,0P  1 

 

Fig. 9.  Final Booth-folded partial products matrix for the modulo 28-1 
squarer.  

Based on the previous analysis, in order to reposition 
all Pi terms of Figure 8, we have to: (a) move all bits of the 
Pi terms with weights larger than 27 (except their sign bits) 
to the corresponding columns with weights less than or 
equal to 27, and (b) add an n-bits correction term to the 
partial products matrix for every Pi term. However, it can be 
easily proven that the three required correction terms can be 
merged to a single n-bits correction term equal to 

11111 6,04,12,2 PPP . 
These transformations provide us with the partial 

products matrix of Figure 9 for computing 
12

2
8 −

A . We 

observe that there are 28 partial product bits, 5 of them 
having a constant value equal to 1. We also observe that the 
maximum height among all columns is equal to 5 and 
resides in columns with weights 20 and 24. However, both 
these columns also have a constant partial product bit, hence 
simplifications can be made at end-around-carry carry save 
adders that will add the partial products.  
 

3. EVALUATION AND COMPARISONS 
In this section we evaluate the architectures that were 
proposed in the previous section and compare them against 
previously proposed architectures. We compare the 
proposed architectures against the architecture of [19] [22] 
for designing  non-encoded   modulo  2n-1 squarers  and  the 

 



TABLE I 
NUMBER OF PARTIAL PRODUCT BITS 

n  [19][22] Proposed 
Non-encoded [23] Proposed 

 Booth 

4  10 8 8 10 
8  36 28 32 28 
16  136 120 128 88 
32  528 496 512 304 
64  2080 2016 2048 1120 

128  8256 8128 8192 4288 
  

architecture of [23] for Booth-encoded modulo 2n-1 
multipliers, for which it is assumed that both inputs are 
driven by the same operand. It should be noted that no other 
Booth-encoded modulo 2n-1 squarer architecture has been 
reported in the open literature.  

All four different architectures derive a matrix of partial 
product bits that are then reduced to two n-bit final 
summands, using end-around-carry carry save adders that 
are composed of full adders and/or half adders, and utilize a 
parallel modulo 2n-1 adder that accepts the two n-bit 
summands and produces the correct result. 

Table I presents the number of partial product bits that 
are derived by each architecture for 6 different values of n 
(n=4, 8, 16, 32, 64, and 128). The number of partial product 
bits provides a rough estimate of the area required by the 
end-around-carry carry save adders. Table I reveals that the 
proposed architecture for non-encoded modulo 2n-1 
squarers leads to less partial product bits compared to the 
architecture of [19] [22]. The proposed architecture for 
Booth-folded modulo 2n-1 squarers also leads to less partial 
product bits compared to the architecture of [23] for all 
examined n values but the smallest. We therefore expect 
that the area requirements of the proposed circuits will be 
less than those of the previously proposed.  

In Table II we present the maximum height of the 
partial products matrix derived in each architecture. This 
maximum height provides a rough estimate of the delay of 
each circuit. We can see that the maximum heights of the 
proposed non-encoded modulo squarers are smaller by 2 
than those of [19] [22]. However, the proposed circuits have 
to wait for the calculation of the ci,j,k and si,j,k partial product 
bits of relation (4). It is therefore expected that both the 
proposed circuits and those of [19] [22] will have 
comparable delays. We can also see that the proposed   
Booth-folded   modulo   squarers   have   smaller  maximum 

TABLE II 
MAXIMUM HEIGHT 

n  [19][22] Proposed  
Non-encoded [23] Proposed

 Booth 

4  4 2 2 4 
8  6 4 4 5 
16  10 8 8 7 
32  18 16 16 11 
64  34 32 32 19 

128  66 64 64 35 
  

heights than those of [23], for medium and large values of n. 
This is justified by the fact that [23] requires n/2 partial 
products whereas the proposed Booth-folded modulo 
squarers only n/4+3 partial products. It is therefore expected 
that, for medium and large values of n, the proposed Booth-
folded modulo squarers will be faster than those of [23]. 

For obtaining realistic area and delay estimates, we 
described in HDL the modulo 2n-1 squarers that result from 
every architecture for 4 different values of n (n=4, 8, 16, 
and 32). The same final modulo 2n-1 adder [24] was used in 
all descriptions of the same size. Each description was 
thoroughly verified and then synthesized and mapped to a  
90 nm CMOS technology, using a commercial synthesis 
tool and assuming typical parameters. The netlists were then 
optimized for area and delay using a standard optimization 
script. Finally, the area and delay estimates listed in Table 
III were attained. 

As expected, the proposed non-encoded modulo 2n-1 
squarers offer comparable delay with that of the circuits of 
[19] [22] within less implementation area. In the modulo 24-
1 squarer case, significant reduction in delay is also 
observed. This is due to the fact that in this case the 
proposed squarer does not require any partial product bit 
reduction whereas the squarer of [19] [22] has to use full 
adders in order to derive the inputs of the final modulo 24-1 
adder. The estimates further indicate that the proposed 
Booth-folded modulo 2n-1 squarers require siginificantly 
less area than those based on [23] while also being equally 
fast for small n and significantly faster for larger values of 
n. Finally, we can observe that, for small values of n, the 
proposed non-encoded architecture for modulo 2n-1 
squarers leads to smaller and faster circuits, while the 
Booth-encoded one is the best choice for modulo squarers 
with medium or large values of n. 
 

 

TABLE III 
AREA AND DELAY ESTIMATES OF MODULO 2N-1 SQUARERS 

  Non-encoded Squarers  Booth-encoded Squarers 

  [19] [22]  Proposed  [23]  Proposed 

n  Area 
(μm2) 

Delay 
(ns) 

 Area 
(μm2) 

Delay 
(ns) 

 Area 
(μm2) 

Delay 
(ns) 

 Area 
(μm2) 

Delay 
(ns) 

4  821 0.35  767 0.27  1993 0.39  1338 0.40 
8  4346 0.54  4104 0.53  5598 0.68  4552 0.57 

16  19614 0.83  18453 0.84  22487 1.01  16600 0.81 
32  78281 1.14  76303 1.14  88358 1.33  61138 1.06 



4. CONCLUSIONS 
An RNS that uses one or more moduli of the 2n-1 form is 
often adopted in digital signal processing applications. Such 
applications often require a lot of squaring operations that 
profit form the existence of a dedicated squarer circuit.  

To this end, two architectures were investigated in this 
paper for the design of modulo 2n-1 squarers. The proposed 
non-encoded modulo 2n-1 squarers offers similar execution 
rates with those of [19] [22] with reduced implementation 
area and are more suitable for small values of n. The 
proposed Booth-folded modulo 2n-1 squarers, on the other 
hand, are more efficient, in terms of area and delay, than the 
modulo squarers that are based on [23] and are more 
suitable for medium and large values of n.  
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