
EFFICIENT ARCHITECTURES FOR MODULO 2n-1 SQUARERS

A. Spyrou1, D. Bakalis2, and H. T. Vergos1

1 Computer Engineering and Informatics Department
University of Patras

Patras, Greece

2 Electronics Laboratory, Physics Department
University of Patras

Patras, Greece

ABSTRACT

Two novel architectures for designing modulo 2n-1 squarers
are given. The first one does not perform any encoding on
the input operand, while the second one uses Booth-
encoding. Pre-layout estimates indicate that both
architectures result in area and/or delay efficient modulo
2n-1 squarers. The non-encoded modulo squarers are more
suitable for small values of n while the Booth-encoded
modulo squarers are more suitable for medium and large
values of n.

Index Terms— Squaring operation, modulo 2n-1
arithmetic circuits, residue number system.

1. INTRODUCTION
Squaring is an operation met very often in digital signal
processing applications, such as vector quantization [1],
image compression and equalization [2] [3] and mean
square error estimation. Several design approaches [4-7]
have been proposed in the past to increase the performance
of binary squarers.

Residue arithmetic has been also used in digital
computing systems for many years. A Residue Number
System (RNS) has been adopted in the design of several
digital systems [8] [9], such as digital signal processors
[10], [11], FIR filters [12-14], Discrete Cosine Transform
processors [15] and communication components [16-18].

In an RNS, a number X is represented as a set of
residues (X1, X2, ..., XM), where Xi = X mod mi (hereafter
denoted by

imi XX =). The mis, with Mi ≤≤1 , are pair-

wise relative prime integers and compose the base of the
RNS. Every operation, suppose o , is executed in parallel
on the corresponding residues of the two operands over the
corresponding modulo arithmetic and produces a new set of
residues. That is,),,,(21 MZZZYXZ Ko == is computed
as:

),,,(
),,,(),,,(),,,(

21
2211

212121

MmMMmm

MMM

YXYXYX
YYYXXXZZZ
oKoo

KoKK

=

=

Since each Zi is computed in a distinct arithmetic unit
(commonly used channel) and its computation depends only

on Xi, Yi and mi, all channel computations can be performed
in parallel without the need of carry propagation among the
channels, leading to significant speedup over the
corresponding binary operations. Three-moduli bases of the
form {2n-1, 2n, 2n+1} have received significant attention,
mainly due to the existence of very efficient combinational
converters from/to the binary system. Therefore, the design
of efficient modulo arithmetic components for the above-
mentioned moduli is vital in RNS-based applications.

Several approaches can be used for designing efficient
modulo squarers. For small values of moduli, either direct
realizations of the minimized logic functions [19] or look-
up tables can be utilized. However, these approaches are
inefficient for medium or large values of moduli. Another
solution is to use modulo multipliers whose inputs are
driven by the same operand. The resulting modulo squarers
however are unnecessarily complex and slow. Another
approach is to derive the partial products required for the
modulo squaring operation and utilize an array or tree
adder-based approach to sum them. During the last years,
several architectures based on the last approach have been
presented for the most commonly used moduli, that is, 2n+1
[19-21] and 2n-1 [19] [22]. In the 2n-1 moduli case, both
architectures of [19] and [22] result in the same modulo
squarers. However, none of them uses the Booth-encoding
technique, which is commonly used in binary multipliers
and squarers in order to reduce the number of partial
products.

In this paper, we present two novel architectures for
designing efficient non-encoded and Booth-encoded
modulo 2n-1 squarers. The proposed non-encoded modulo
2n-1 squarers rely on the work of [6] for binary squarers and
offer a reduced partial products matrix and reduced
implementation area compared to the modulo squarers of
[19] [22]. The proposed Booth-encoded modulo 2n-1
squarers follow the Booth-folding technique proposed for
binary squarers in [7] and can perform modulo squaring
significantly faster compared to the modulo squarers that
can be derived by the Booth-encoded modulo 2n-1
multipliers of [23].

The rest of the paper is organized as follows: The
proposed modulo 2n-1 squaring architectures are derived in

978-1-4244-3298-1/09/$25.00 ©2009 IEEE � � � � � � DSP 2009

214 213 212 211 210 29 28 27 26 25 24 23 22 21 20
 70aa 60aa 50aa 40aa 30aa 20aa 10aa 00aa
 71aa 61aa 51aa 41aa 31aa 21aa 11aa 01aa
 72aa 62aa 52aa 42aa 32aa 22aa 12aa 02aa
 73aa 63aa 53aa 43aa 33aa 23aa 13aa 03aa
 74aa 64aa 54aa 44aa 34aa 24aa 14aa 04aa
 75aa 65aa 55aa 45aa 35aa 25aa 15aa 05aa
 76aa 66aa 56aa 46aa 36aa 26aa 16aa 06aa

77aa 67aa 57aa 47aa 37aa 27aa 17aa 07aa

Fig. 1. Initial partial products matrix for the A2 term in the modulo 28-1 case.

214 213 212 211 210 29 28 27 26 25 24 23 22 21 20
 70aa 60aa 50aa 40aa 30aa 20aa 10aa 0a
 71aa 61aa 51aa 41aa 31aa 21aa 1a
 72aa 62aa 52aa 42aa 32aa 2a
 73aa 63aa 53aa 43aa 3a
 74aa 64aa 54aa 4a
 75aa 65aa 5a

76aa 6a

7a

Fig. 2. Folded partial products matrix for the A2 term in the modulo 28-1 case.

 Section 2. Section 3 presents qualitative and quantitative
comparison results. Finally, conclusions are drawn in the
last section.

2. MODULO 2n -1 SQUARERS
In this section we present two architectures for designing
modulo 2n-1 squarers. The first subsection deals with non-
encoded squarers whereas the second subsection deals with
Booth-encoded squarers.

2.1. Non-encoded modulo 2n-1 squarers
Let 01 aaA n L−= be the n-bit input operand of the modulo

2n-1 squarer, with 120 −<≤ nA . Then, the output is equal
to:

12

1

0

1

0
1212

2 2
−

−

=

−

=

+
−− ∑∑=×=

n

nn

n

i

n

j

ji
jiaaAAA (1)

For the clarity of presentation, the n=8 case is
considered in the following. The derived methodology
however can be straightforwardly applied to any other value
of n. The partial products matrix required for the squaring
term of relation (1), when n=8, is given in Figure 1. Since

iii aaa = and jiijji aaaaaa 2=+ , the matrix of Figure 2
can be used equivalently.

An n-bits wide matrix can then be derived for the
modulo squaring operation by repositioning each partial
product bit, suppose x, that has a weight larger than 2n-1
taking into account that:

1212
22

−−

+ = nn

ini xx (2)

Figure 3 presents the 8-bits wide matrix that is derived as
the result of repositioning every x bit that has a weight equal
to 2i+8, i=0,...,6, to the column with weight 2i. The matrix
consists of 36 partial product bits and the maximum height
among all columns is equal to 6. This is the partial products
matrix also used in the architectures of [19] and [22].

27 26 25 24 23 22 21 20

3a 2a 1a 0a
60aa 50aa 40aa 30aa 20aa 10aa 70aa
51aa 41aa 31aa 21aa 71aa 61aa
42aa 32aa 72aa 62aa 52aa

 73aa 63aa 53aa 43aa
 74aa 64aa 54aa 4a
 75aa 65aa 5a
 76aa 6a
 7a

Fig. 3. Initial partial products matrix for the modulo 28-1 squarer.

27 26 25 24 23 22 21 20

32aa 32aa 21aa 21aa 10aa 10aa 70aa 70aa
60aa 50aa 40aa 30aa 20aa

51aa 41aa 31aa 71aa 61aa
42aa 72aa 62aa 52aa

 73aa 63aa 53aa
 74aa 64aa 43aa 43aa
 75aa 54aa 54aa
 65aa 65aa

76aa 76aa

Fig. 4. Modified partial products matrix for the modulo 28-1 squarer.

27 26 25 24 23 22 21 20
2,3,4s 1,2,3c 1,2,3s 0,1,2c 0,1,2s 7,0,1c 7,0,1s 2,3,4c
6,7,0s 5,6,7c 5,6,7s 4,5,6c 4,5,6s 3,4,5c 3,4,5s 6,7,0c
51aa 50aa 40aa 30aa 73aa 72aa 62aa 61aa

 41aa 74aa 63aa 52aa

Fig. 5. Final partial products matrix for the modulo 28-1 squarer.

Furthermore, by applying [5] that:
k

ji
k

ji
k

iji aaaaaaa 2)(2)(2)(1 +=+ + (3)
n=8 times in the partial product matrix of Figure 3 we derive
the partial products matrix of Figure 4, which also has 36
partial product bits, but a reduced maximum height equal to
5. Considering [6] that:

l
kji

l
kji

l
kjki

l
ji scaaaaaa 222)(2)(,,

1
,,

1 +=++ ++ (4)

where)(,, kjikji aaac ∨= and kjikji aaas)(,, ⊕= (the ∨ and

⊕ symbols denote logical OR and XOR operations,
respectively), we can further reduce the total number of
partial product bits. Relation (4) indicates that the addition
of three partial product bits in adjacent columns can be
replaced by two pre-calculated partial product bits. n=8 such
triplets exist in Figure 4. Each one is uniquely shaded in
Figure 4. The grouping of bits 32aa and 42aa (76aa and

60aa) that have weights equal to 27 with the bit 43aa (70aa)
that has a weight equal to 20 can be justified due to the fact
that

12

0

12
22

−−
= nn xx n . Hence, bit 43aa (70aa) can be

treated as having weight equal to 28 and the 2,3,4c (6,7,0c) bit
resulting from relation (4), which also has a weight equal to
28 can be driven back to the column with weight 20 due to
the same reason.

After the above transformations, the partial products
matrix of Figure 5 is attained for

12

2
8 −

A . The number of

required partial product bits has been reduced from 36 to 28
while in parallel the maximum height of the columns has
been reduced from 6 to 4, at the cost of requiring the kjis ,,

and kjic ,, bits of relation (4).

According to the previous analysis, the corresponding
circuit of a modulo 28-1 squarer utilizes: (a) 8 blocks for
deriving the kjis ,, and kjic ,, bits of relation (4), (b) some
end-around-carry carry save adders, composed of full adders
and half adders, in order to reduce the height of each column
of Figure 5 to 2, that is, in order to derive two final 8-bit
summands, and (c) one parallel modulo 28-1 adder (which is
equivalent to a 1’s complement binary adder) to add the two
final summands and derive the result.

2.2. Booth-encoded modulo 2n-1 squarers
A common method used in multipliers and squarers for
reducing the number of partial products is to use the
encoding of the modified Booth algorithm. Let

01 aaA n L−= be the n-bit input operand of the modulo 2n-1
squarer as before. We will concentrate our analysis on even
values of n, which is the most common case.

Taking into account that
12 −

= nAA , we have [23] that:

12

12

0

2

12

12

0

2
12212 22)2(

−

−

=
−

−

=
−+ ∑∑ =++−=

nn

n

i

i
i

n

i

i
iii AaaaA (5)

where }2,1,0,1,2{2 12212 ++−−∈++−= −+ iiii aaaA and

11 −− = naa . Relation (5) indicates that we can partition
operand A into 3-bit groups in order to encode A in modulo
2n-1 arithmetic.

Efficient binary squarers that use a Booth-encoded
operand have been recently proposed in [7]. Even greater
area and delay efficiency was achieved by a folding
technique. Both these techniques are explored in the
following for deriving an efficient Booth-folded modulo 2n-
1 squarer architecture. For the clarity of presentation, we
again concentrate on the n=8 case, but the generalization is
straightforward. When n=8, from (5) we have that:

12

0
0

2
1

4
2

6
3

12

3

0

2
8

8

22222
−

−=

+++== ∑ AAAAAA
i

i
i

and

12

3

0

2
3

0

2

1212

3

0

2

12

3

0

2
1212

2

8

888

88

22

22

−==

−−=−=
−−

∑∑

∑∑

×=

×=×=

i

i
i

i

i
i

i

i
i

i

i
i

AA

AAAAA

(6)

Thus, the square of A modulo 28-1 can be computed using
the Booth-encoded parts of A instead of its bits. The
resulting partial products matrix is shown in Figure 6 and
since jiijji AAAAAA 2=+ , it is equivalent to that of

Figure 7. Let iii AAC ×= , 3,...,0=i and

∑
+=

−−=
3

1

)1(22
ik

ik
iki AAP , 2,...0=i as defined in [7].

Obviously, Ci terms are unsigned numbers. Since they
assume only one of the three values {0, 1, 4}, they can be

212 210 28 26 24 22 20
 03 AA 02 AA 01AA 00 AA
 13 AA 12 AA 11AA 10 AA
 23 AA 22 AA 21AA 20 AA

33 AA 32 AA 31AA 30 AA

Fig. 6. Initial partial products matrix for the Booth-encoded modulo 28-1
squarer.

212 210 28 26 24 22 20
032 AA 022 AA 012 AA 00 AA

 132 AA 122 AA 11AA
 232 AA 22 AA

33 AA

Fig. 7. Folded partial products matrix for the Booth-encoded modulo 28-1
squarer.

214 213 212 211 210 29 28 27 26 25 24 23 22 21 20
 6,0P 5,0P 4,0P 3,0P 2,0P 1,0P 0,0P 2,0C 0,0C
 4,1P 3,1P 2,1P 1,1P 0,1P 2,1C 0,1C
 2,2P 1,2P 0,2P 2,2C 0,2C

2,3C 0,3C

Fig. 8. Booth-folded partial products matrix for the modulo 28-1 squarer.

represented by 3 bits, with the middle bit always equal to 0.
On the other hand, the Pi terms represent signed two’s
complement numbers. They can be easily computed using a
simple one’s complement circuit as described in [7]. In the
case of n=8, P0, P1, and P2 have 7, 5, and 3 bits,
respectively. Denoting the j-th bit of Ci and Pi as Ci,j and Pi,j,
respectively, Figure 8 presents the bits of the Pi and Ci terms
that have to be summed for computing the multiplication
term of relation (6).

Starting from the matrix of Figure 8, one has to
reposition every bit with weight larger than 27 to a column
with weight less than or equal to 27 for deriving a 8-bits
wide matrix for the modulo squaring operation. Since C2
and C3 are unsigned numbers, the C2,2 and C2,0 (C3,2 and
C3,0) partial product bits can be easily moved from columns
with weights 210 and 28 (214 and 212) to columns with
weights 22 and 20 (26 and 24), respectively, due to (2).
However, the Pi,j partial product bits have to be treated
differently since the Pi terms represent signed two’s
complement numbers. Let 01 xxX k L−= denote a signed
two’s complement number with k bits (k>n). Obviously,

1−kx represents the sign bit of X. Then, it holds that:

12

0
0

1
11

1
1

12

0
0

2
2

1
112

2)(2)(2

222

−+
−

−

−

−
−

−
−−

+++++−=

+++−=

n

nn

xxxxx

xxxX

nn
k

k

k
k

k
k

L

L

and thus, for computing
12 −nX , we have to: (a) move all

bits of X with weights larger than 2n-1 (except the sign bit) to
the corresponding columns with weights less than or equal
to 2n-1, according to relation (2), and (b) add an n-bits
correction term equal to 1111 1 KK −kx , where 1−kx has a

weight equal to nk 12 − . This correction term can be justified
as follows: If 0≥X , then xk-1=0 and

1212

1
1 1202

−−

−
− −==− nn

nk
kx . If 0<X , then xk-1=1 and

12

1

12

1

12

1
1 21222

−

−

−

−

−

−
− −−=−=−

n

n

n

n
n

knkk
kx .

27 26 25 24 23 22 21 20
 2,1C 0,1C 2,0C 0,0C
 2,3C 0,3C 2,2C 0,2C

4,0P 3,0P 2,0P 1,0P 0,0P 5,0P

0,1P 3,1P 2,1P 1,1P

 1,2P 0,2P
1 1 2,2P 1 4,1P 1 6,0P 1

Fig. 9. Final Booth-folded partial products matrix for the modulo 28-1
squarer.

Based on the previous analysis, in order to reposition
all Pi terms of Figure 8, we have to: (a) move all bits of the
Pi terms with weights larger than 27 (except their sign bits)
to the corresponding columns with weights less than or
equal to 27, and (b) add an n-bits correction term to the
partial products matrix for every Pi term. However, it can be
easily proven that the three required correction terms can be
merged to a single n-bits correction term equal to

11111 6,04,12,2 PPP .
These transformations provide us with the partial

products matrix of Figure 9 for computing
12

2
8 −

A . We

observe that there are 28 partial product bits, 5 of them
having a constant value equal to 1. We also observe that the
maximum height among all columns is equal to 5 and
resides in columns with weights 20 and 24. However, both
these columns also have a constant partial product bit, hence
simplifications can be made at end-around-carry carry save
adders that will add the partial products.

3. EVALUATION AND COMPARISONS
In this section we evaluate the architectures that were
proposed in the previous section and compare them against
previously proposed architectures. We compare the
proposed architectures against the architecture of [19] [22]
for designing non-encoded modulo 2n-1 squarers and the

TABLE I
NUMBER OF PARTIAL PRODUCT BITS

n [19][22] Proposed
Non-encoded [23] Proposed

 Booth

4 10 8 8 10
8 36 28 32 28
16 136 120 128 88
32 528 496 512 304
64 2080 2016 2048 1120

128 8256 8128 8192 4288

architecture of [23] for Booth-encoded modulo 2n-1
multipliers, for which it is assumed that both inputs are
driven by the same operand. It should be noted that no other
Booth-encoded modulo 2n-1 squarer architecture has been
reported in the open literature.

All four different architectures derive a matrix of partial
product bits that are then reduced to two n-bit final
summands, using end-around-carry carry save adders that
are composed of full adders and/or half adders, and utilize a
parallel modulo 2n-1 adder that accepts the two n-bit
summands and produces the correct result.

Table I presents the number of partial product bits that
are derived by each architecture for 6 different values of n
(n=4, 8, 16, 32, 64, and 128). The number of partial product
bits provides a rough estimate of the area required by the
end-around-carry carry save adders. Table I reveals that the
proposed architecture for non-encoded modulo 2n-1
squarers leads to less partial product bits compared to the
architecture of [19] [22]. The proposed architecture for
Booth-folded modulo 2n-1 squarers also leads to less partial
product bits compared to the architecture of [23] for all
examined n values but the smallest. We therefore expect
that the area requirements of the proposed circuits will be
less than those of the previously proposed.

In Table II we present the maximum height of the
partial products matrix derived in each architecture. This
maximum height provides a rough estimate of the delay of
each circuit. We can see that the maximum heights of the
proposed non-encoded modulo squarers are smaller by 2
than those of [19] [22]. However, the proposed circuits have
to wait for the calculation of the ci,j,k and si,j,k partial product
bits of relation (4). It is therefore expected that both the
proposed circuits and those of [19] [22] will have
comparable delays. We can also see that the proposed
Booth-folded modulo squarers have smaller maximum

TABLE II
MAXIMUM HEIGHT

n [19][22] Proposed
Non-encoded [23] Proposed

 Booth

4 4 2 2 4
8 6 4 4 5
16 10 8 8 7
32 18 16 16 11
64 34 32 32 19

128 66 64 64 35

heights than those of [23], for medium and large values of n.
This is justified by the fact that [23] requires n/2 partial
products whereas the proposed Booth-folded modulo
squarers only n/4+3 partial products. It is therefore expected
that, for medium and large values of n, the proposed Booth-
folded modulo squarers will be faster than those of [23].

For obtaining realistic area and delay estimates, we
described in HDL the modulo 2n-1 squarers that result from
every architecture for 4 different values of n (n=4, 8, 16,
and 32). The same final modulo 2n-1 adder [24] was used in
all descriptions of the same size. Each description was
thoroughly verified and then synthesized and mapped to a
90 nm CMOS technology, using a commercial synthesis
tool and assuming typical parameters. The netlists were then
optimized for area and delay using a standard optimization
script. Finally, the area and delay estimates listed in Table
III were attained.

As expected, the proposed non-encoded modulo 2n-1
squarers offer comparable delay with that of the circuits of
[19] [22] within less implementation area. In the modulo 24-
1 squarer case, significant reduction in delay is also
observed. This is due to the fact that in this case the
proposed squarer does not require any partial product bit
reduction whereas the squarer of [19] [22] has to use full
adders in order to derive the inputs of the final modulo 24-1
adder. The estimates further indicate that the proposed
Booth-folded modulo 2n-1 squarers require siginificantly
less area than those based on [23] while also being equally
fast for small n and significantly faster for larger values of
n. Finally, we can observe that, for small values of n, the
proposed non-encoded architecture for modulo 2n-1
squarers leads to smaller and faster circuits, while the
Booth-encoded one is the best choice for modulo squarers
with medium or large values of n.

TABLE III
AREA AND DELAY ESTIMATES OF MODULO 2N-1 SQUARERS

 Non-encoded Squarers Booth-encoded Squarers

 [19] [22] Proposed [23] Proposed

n Area
(μm2)

Delay
(ns)

 Area
(μm2)

Delay
(ns)

 Area
(μm2)

Delay
(ns)

 Area
(μm2)

Delay
(ns)

4 821 0.35 767 0.27 1993 0.39 1338 0.40
8 4346 0.54 4104 0.53 5598 0.68 4552 0.57

16 19614 0.83 18453 0.84 22487 1.01 16600 0.81
32 78281 1.14 76303 1.14 88358 1.33 61138 1.06

4. CONCLUSIONS
An RNS that uses one or more moduli of the 2n-1 form is
often adopted in digital signal processing applications. Such
applications often require a lot of squaring operations that
profit form the existence of a dedicated squarer circuit.

To this end, two architectures were investigated in this
paper for the design of modulo 2n-1 squarers. The proposed
non-encoded modulo 2n-1 squarers offers similar execution
rates with those of [19] [22] with reduced implementation
area and are more suitable for small values of n. The
proposed Booth-folded modulo 2n-1 squarers, on the other
hand, are more efficient, in terms of area and delay, than the
modulo squarers that are based on [23] and are more
suitable for medium and large values of n.

REFERENCES
[1] R. Jain, A. Madisetti, and R. L. Baker, “An integrated circuit

design for pruned tree-search vector quantization encoding
with an off-chip controller,” IEEE Transactions on Circuits
and Systems for Video Technology, vol. 2, no. 2, pp. 147-158,
1992.

[2] Y. Fengqi, and A. N. Wilson, “Multirate digital squarer
architectures,” in Proc. IEEE Int. Conference on Electronics,
Circuits and Systems, pp. 177-180, 2001.

[3] J. G. Proakis, Digital Communication, McGraw-Hill, 1995.
[4] T. C. Chen, “A binary multiplication scheme based on

squaring,” IEEE Transactions on Computers, vol. 20, no. 4,
pp. 678-680, 1971.

[5] R. K. Karagotla, W. R. Griesbach, and H. T. Srinivas, “VLSI
implementation of 350MHz 0.35μm 8 bit merged squarer,”
Electronics Letters, vol. 34, no 1, pp. 47-48, 1998.

[6] K.-J. Cho, and J.-G. Chung, “Parallel squarer design using
pre-calculated sums of partial products,” Electronics Letters,
vol. 43, no 25, pp. 1414-1416, 2007.

[7] A. Strollo, and D. Caro, “Booth folding encoding for high
performance squarer circuits,” IEEE Transactions on Circuits
and Systems II, vol. 50, no. 5, pp. 250-254, 2003.

[8] P. V. Ananda Mohan, Residue Number Systems: Algorithms
and Architectures, Kluwer Academic Publishers, 2002.

[9] A. Omondi, and B. Premkumar, Residue number systems:
theory and implementation, Imperial College Press, 2007.

[10] R. Chaves, and L. Sousa, “RDSP: A RISC DSP based on
residue number system”, in Proc. Euromicro Symposium on
Digital System Design, pp. 128–135, 2003.

[11] J. Ramirez, A. Garcia, S. Lopez-Buedo, and A. Lloris, “RNS-
enabled digital signal processor design,” Electronics Letters,
vol. 38, no 6, pp. 266–268, 2002.

[12] G. Cardarilli, A. Nannarelli, and M. Re, “Reducing power
dissipation in FIR filters using the residue number system,” in
Proc. IEEE Midwest Symposium on Circuits and Systems, pp.
320-323, 2000.

[13] J. Ramirez, and U. Meyer-Baese, “High performance, reduced
complexity programmable RNS-FPL merged FIR filters,”
Electronics Letters, vol. 38, no. 4, pp. 199-200, 2002.

[14] Y. Liu, and E. Lai, “Moduli set selection and cost estimation
for RNS-based FIR filter and filter bank design”, Design
Automation for Embedded Systems, vol. 9, no. 2, pp. 123-139,
2004.

[15] P. G. Fernandez, and A. Lloris, “RNS-based implementation
of 8x8 point 2D-DCT over field-programmable devices,”
Electronics Letters, vol. 39, no 1, pp. 21-23, 2003.

[16] U. Meyer-Baese, A. Garcia, and F. Taylor, “Implementation
of a communications channelizer using FPGAs and RNS
arithmetic,” Journal of VLSI Signal Processing, vol. 28, no. 1-
2, pp. 115-128, 2001.

[17] J. Ramirez, A. Garcia, U. Meyer-Baese, and A. Lloris, “Fast
RNS FPL-based communications receiver design and
implementation,” in Proc. Int. Conference on Field
Programmable Logic, pp. 472-481, 2002.

[18] M. Panella, and G. Martinelli, “An RNS Architecture for
Quasi-Chaotic Oscillators,” Journal of VLSI Signal
Processing, vol. 33, no. 1-2, pp. 199-220, 2003.

[19] S. Piestrak, “Design of squarers modulo A with low-level
pipelining,” IEEE Transactions on Circuits and Systems II,
vol. 49, no 1, pp. 31-41, 2002.

[20] H. T. Vergos, and C. Efstathiou, “Efficient modulo 2k+1
squarers,” in Proc. Design of Circuits and Integrated Systems,
2006.

[21] H. T. Vergos, and C. Efstathiou, “Diminished-1 modulo 2n+1
squarer design,” IEE Proceedings - Computers and Digital
Techniques, vol. 152, no 5, pp. 561-566, 2005.

[22] B. Cao, T. Srikanthan, C.-H. Chang, “A new design method to
modulo 2n-1 squaring,” in. Proc. Int. Symposium on Circuits
and Systems, pp. 664-667, 2005.

[23] C. Efstathiou, H. T. Vergos, and D. Nikolos, “Modified Booth
Modulo 2n-1 Multipliers,” IEEE Transactions on Computers,
vol. 53, no. 3, pp. 370-374, 2004.

[24] L. Kalampoukas, D. Nikolos, C. Efstathiou, H. T. Vergos, and
J. Kalamatianos, “High-Speed Parallel Prefix Modulo 2n-1
Adders,” IEEE Transactions on Computers, vol. 49, no. 7, pp.
673-680, 2000.

