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Abstract

The contribution of this paper is twofold. We firstly
show that an augmented diminished-1 adder can be used
for the modulo 2n + 1 addition of two n-bit operands in the
weighted representation, if it is driven by operands whose
sum has been decreased by 1. This scheme outperforms so-
lutions that are based on the use of binary adders and /
or weighted modulo 2n + 1 adders in both area and delay
terms. We then apply this scheme in the design of residue
generators (RGs) and multi-operand modulo adders (MO-
MAs). The resulting arithmetic components remove at least
a whole parallel adder out of the critical path of the cur-
rently most efficient proposals. Experimental results indi-
cate savings of more than 30% in execution time and of ap-
proximately 19% in implementation area when the proposed
architectures are used.

1. Introduction

Modulo 2n + 1 arithmetic has been used in a variety
of applications, ranging from pseudorandom number gen-
eration and cryptography [14] up to convolution computa-
tions without round-off errors [13]. A channel performing
arithmetic operations modulo 2n + 1 is most commonly
an integral part of almost every residue number system
(RNS) [19]. The RNS is an arithmetic system well-suited
to applications in which the operations are limited to ad-
dition, subtraction and multiplication. The adoption of an
RNS can offer significant speedup over the binary system
and has therefore been reported in the design of digital sig-
nal processors [17, 19], FIR filters [4] and communication
components [16].

Two different representations have been studied for the
modulo 2n + 1 operands; the common weighted one and
the diminished-1. An arithmetic component that performs
a modulo 2n + 1 operation will hereafter be denoted as

weighted or diminished-1 component depending on the rep-
resentation used for its inputs and outputs. The weighted
representation has the disadvantage that it requires n+1 bits
for representing each operand while it utilizes only the 2n +
1 combinations. In the most common three-moduli RNS
that uses channels of the {2n−1, 2n, 2n +1} form, the exe-
cution delay is therefore dictated by the modulo 2n+1 chan-
nel. On the other hand, the diminished-1 representation [12]
dictates that each operand is represented decreased by one
compared to its weighted representation. Zero operands are
not used in the computation channel; the results are derived
alternatively when any operand or the result is zero. There-
fore only n-bit operands are used in a diminished-1 channel,
leading to smaller and faster components. However, the use
of the diminished-1 representation involves the overhead of
translators from and to the weighted system. Intermediate
results do not have to be translated immediately back to the
weighted system; therefore, if a significant number of com-
putations takes place before a new translation is required,
the use of the diminished-1 system may be profitable. Sev-
eral architectures have been proposed for modulo 2n + 1
arithmetic components for each of the two representations,
including parallel-adders [2, 5, 7, 9, 22, 23], multi-operand
adders [1, 3, 15] and residue generators [1, 15].

In this paper we show that a diminished-1 adder with mi-
nor modifications can be also used for the modulo 2n+1 ad-
dition of n-bit weighted operands, provided that it is driven
by operands whose sum has been decreased by 1. The re-
quired modifications do not increase the execution delay of
the adder and can be implemented in low area. Since cur-
rently, the most efficient architectures for a diminished-1
adder outperform those for weighted operands in both area
and delay terms, the augmented diminished-1 adder can
be used very efficiently if the decreased sum of the input
operands can be easily derived. We show that this is the
case in both the residue generators and the weighted multi-
operand modulo adders cases.



2 The Augmented Diminished-1 Adder

2.1 Weighted Modulo 2n + 1 Addition
Background

A number of different architectures can be followed for
the design of a modulo 2n+1 weighted adder; some of them
stem from the general residue adder case, whereas others
are dedicated architectures for this particular modulus.

For the modulo 2n + 1 addition of A and B, hereafter
denoted by |A+B|2n+1, where A = anan−1an−2 · · · a1a0

and B = bnbn−1bn−2 · · · b1b0 are two (n + 1)-bit binary
numbers in the range [0, 2n], we have that :

|A + B|2n+1 =

{
A + B − (2n + 1), if A + B ≥ 2n + 1

A + B, otherwise.
(1)

Following the general residue adder architecture pre-
sented in [2], we can implement (1) by using two binary
adders connected in series and a multiplexer. A (n + 1)-
bit adder is used to compute A + B, while a −(2n + 1)
correction is added to its output by the second (n + 2)-bit
adder. The multiplexer is then used to select between the
two adders’ results depending on the value of the carry out-
put of the second adder. In [5], Dugdale has reduced the
width of the second adder to (n + 1) bits and has shown
that the multiplexers can be controlled by the logical OR
of the two adders’ carry outputs. She has also presented
an area efficient architecture that performs the modular ad-
dition using just one adder in two addition cycles. Both
these architectures are very slow. An obvious solution for
decreasing the delay of the above architectures is to have
both cases of (1) computed in parallel [21]. This solution
however, apart from the two adders requires the addition of
a carry-save adder (CSA) stage. A more area effective solu-
tion was proposed in [9], by observing that most carry prop-
agate and generate signals for both cases of (1) are common
and therefore an augmented single carry look-ahead (CLA)
unit is sufficient. Finally, in [7] parallel-prefix weighted
adders have been presented. These have been shown to
be the fastest available and more efficient than the proposal
of [9].

2.2 Diminished-1 Modulo 2n + 1 Addition
Background

An even larger number of architectures is available for
the design of a diminished-1 adder since its operation has
been shown to be equivalent to an inverted end-around carry
(EAC) binary adder [22, 23]. [22] proposed single and
multiple level CLA architectures. Parallel-prefix architec-
tures have been proposed in [22, 23]. The parallel-prefix
diminished-1 adders of [22] in particular, offer the mini-
mum number of prefix levels reported in the open literature,

which is equal to that required by the fastest binary adders
as well. As a consequence, a diminished-1 adder can be
designed to operate as fast as a parallel-prefix binary adder.

Table 1 summarizes the area and delay requirements in
equivalent gates of some weighted and diminished-1 archi-
tectures (ignore the last part at this point). These estimates
are derived using the unit-gate model [20]. We assume that
both addition operands are in the [0, 2n − 1] range (the 2n

operand value is not considered at this point) and that all
binary adders follow the Kogge-Stone [11] parallel-prefix
carry computation architecture. The area and delay esti-
mates derived for n=4, 8, 16 or 32 are given in Table 2.

From the estimates it becomes obvious that, considering
the current state of the art, a diminished-1 adder is both a
smaller and faster circuit than a weighted modulo 2n + 1
adder. Therefore, if we could use a diminished-1 adder with
minor modifications to also perform weighted modulo 2n +
1 addition, we would reduce both the area and the delay of
the resulting components. In the next subsection we show
that this is possible.

2.3 Using a Diminished-1 Adder for
Weighted Addition

Let A and B represent two n-bit operands in the [0, 2n−
1] range. Let A� and B� denote two n-bit vectors such
A� + B� = A + B − 1. According to (1), we then have
that :

|A + B|2n+1 =

{
A + B − (2n + 1), if A + B ≥ 2n + 1

A + B, otherwise

or equivalently that :

|A + B|2n+1 =

{
(A + B − 1) − 2n, if A + B − 1 ≥ 2n

(A + B − 1) + 1, otherwise.
(2)

Taking the modulo 2n of (2) and using A� and B� we
then get :

∣∣∣|A + B|2n+1

∣∣∣
2n

=

{
(A� + B�), if (A� + B�) ≥ 2n

(A� + B�) + 1, otherwise.
(3)

Let cout denote the carry output of the (A� + B�) n-bit
integer addition. Using it in (3), we can unify the two cases
as : ∣∣|A + B|2n+1

∣∣
2n = |A� + B�|2n + cout (4)

Relation (4) indicates that we can derive the n least signifi-
cant bits of the weighted modulo 2n+1 addition of A and B
by using an inverted end-around carry adder (equivalently,
a diminished-1 adder) provided that the sum of its inputs is
decreased by 1, that is, if we use as inputs the A� and B�

vectors.
The most significant bit of the weighted addition of A

and B should be 1, only when |A + B|2n+1 = 2n, which



Table 1. Area and delay estimations provided by the unit-gate model
Weighted modulo 2n + 1 adders

Architecture Delay Area
[2] 2 log n + 2 log(n + 1) + 8 3

2n log n + 3
2 (n + 1) log(n + 1) + 13n + 8

[21] 2 log n + 7 3
2n log n + 3

2 (n + 1) log(n + 1) + 16n + 8
[7] 2 log n + 7 9

2n log n + 4n + 11
Diminished-1 modulo 2n + 1 adders

Architecture Delay Area
[22] 2 log n + 3 9

2n log n + 1
2n + 5

Proposed augmented diminished-1 adder for n-bit weighted modulo 2n + 1 addition

Architecture Delay Area
Proposed 2 log n + 3 9

2n log n + 3
2n + 4

Table 2. Derived area and delay estimates
Weighted modulo 2n + 1 adders

n = 4 n = 8 n = 16 n = 32
Architecture Delay Area Delay Area Delay Area Delay Area

[2] 18 95 22 202 26 440 30 961
[21] 11 107 13 226 15 488 17 1057
[7] 11 63 13 151 15 363 17 859

Diminished-1 modulo 2n + 1 adders
n = 4 n = 8 n = 16 n = 32

Architecture Delay Area Delay Area Delay Area Delay Area
[22] 7 44 9 118 11 302 13 742

Proposed augmented diminished-1 adder for weighted modulo 2n + 1 addition
n = 4 n = 8 n = 16 n = 32

Architecture Delay Area Delay Area Delay Area Delay Area
Proposed 7 47 9 125 11 317 13 773

since 0 ≤ A, B ≤ 2n−1 reduces to A�+B� = 2n−1, that
is, when A� and B� are bit-wise complementary. This con-
dition can be easily detected as the logical AND of the XOR
of the bits of A� and B� with the same weight. Since in
every fast adder architecture there is a preprocessing stage
that computes the half-sum terms, that is, the XOR of the
corresponding input operands bits, the extra hardware re-
quired for deriving the most significant bit of the weighted
addition is small. Since this operation, according to the unit-
gate model, can be completed by a tree of two-input gates in
log n+2 time units, while the diminished-1 adder computes
the rest bits in 2 log n+3 time units, it does not add any de-
lay on the critical path of the diminished-1 adder. In some
adder cases (known as XOR adders) the half sum term is
also used as the carry propagate term. The group propagate
terms in these adders are the logical AND of the half-sum
terms and therefore no extra hardware is required for the
derivation of the most significant bit.

Figure 1 presents the architecture that results from the
previous analysis. A translator circuit accepts the n-bit vec-
tors A and B and provides the vectors A� and B�. These
are driven to an augmented diminished-1 adder that is ca-
pable of providing the (n + 1)-bit sum of the weighted
modulo 2n + 1 addition of A and B. The last parts of Ta-
bles 1 and 2 provide area and delay estimates for the aug-
mented diminished-1 adder of Figure 1, assuming that the
diminished-1 adder is designed following the architecture
of [22]. The estimates of Table 2 indicate that the aug-
mented diminished-1 adder also offers implementation area
and execution delay savings over every architecture pro-
posed for weighted addition. We therefore conclude that its
use is very attractive if the translator circuit of Figure 1 can
be designed efficiently. In the following section, we show
that for two weighted arithmetic components, namely the
residue generator and the multi-operand weighted modulo
adder, the translator required is either extremely small or



 

Figure 1. Using an augmented diminished-1
adder for n-bit weighted addition.

nothing at all. During the multi-operand weighted modulo
adder case, we further examine how we can handle (n+1)-
bit operands as well.

3 Applications

In this section we show that the adder proposed in
Figure 1 can be easily incorporated in the design of
weighted residue generators (RGs) and multi-operand mod-
ulo adders (MOMAs). The notations RG(k, 2n + 1) and
MOMA(k, 2n + 1) are used hereafter to indicate a circuit
that produces the residue of a k-bit weighted number A,
in modulo 2n + 1 arithmetic and a weighted multi-operand
modulo 2n + 1 adder for k operands respectively. The no-
tation n-bit MOMA is used to denote a MOMA(k, 2n + 1),
with n-bit wide input operands.

3.1 Novel Residue Generators

In a modulo 2n +1 arithmetic component, irrespectively
of the representation used, every operand has to be ex-
pressed in modulo 2n + 1 arithmetic before it can be used.
This is done by a residue generator circuit. Although a di-
vider can be employed for attaining the residue of A taken
modulo 2n+1, solutions that require a divider are very slow
and therefore inefficient. Faster and smaller residue gener-
ators can be devised following the proposals of [1, 15].

In [1] an RG(k, 2n + 1) is proposed, in which all the
residues of the powers 2i taken modulo 2n+1, with 0 ≤ i ≤
(k − 1), are pre-computed. Each such residue is logically
ANDed with the corresponding bit i of the input operand.
The resulting logical products are then driven to a weighted
MOMA(k, 2n + 1) that provides the residue.

The area and time complexity for the RG circuit can be
further reduced by taking advantage of the periodic prop-
erties of the powers of 2 taken modulo 2n + 1 [15]. The
residue |A|2n+1 was proposed in [15] to be computed by
the following steps :

1. partition the k bits in groups suppose g0, g1, . . . g� k
n�,

of n bits each, starting from the least significant bits.
If the last group contains less than n bits, then 0s are
assumed at the most significant bit positions.

2. invert the bits of the odd numbered groups and account
a correction factor of 2 for every inverted group. If the
last group is an odd numbered one and incomplete at
bit positions d, d + 1, . . . , n− 1 also account a correc-
tion factor of

∑n−1
i=d 2i.

3. use an inverted EAC CSA tree to add the numbers
of the even and the inverted odd groups along with
a required total correction factor, until two n-bit final
operands are derived. The use of an inverted EAC CSA
tree for reducing the operands in two final summands
is justified by observing that a carry output at the most
significant bit position, suppose cn, that has a weight
of 2n, can be complemented and added at the least sig-
nificant bit position in the next stage, provided that a
correction equal to −1 is taken into account, since it
holds that :

|cn2n|2n+1 = |−cn|2n+1 = |2n + cn|2n+1 = |cn − 1|2n+1 .

The total correction factor is equal to E, with 0 ≤ E ≤
2n. E does not only include the correction required
due to step 2 above, but also incorporates the correc-
tion due to the inverted EAC CSA tree itself.

4. use a final weighted adder, consisting of two binary
adders connected in series and a multiplexer [2], to de-
rive the residue.

The augmented diminished-1 adder of Figure 1 can ob-
viously replace the final weighted adder of step 4, just by
using |E − 1|2n+1 instead of E as the total correction fac-
tor. When E is 0, no correction factor is at all required in
the proposed architecture. This is justified by observing that
in modulo 2n +1 arithmetic an inverted EAC CSA addition
of A,B with 0 results into A + B + 1, that is, it increases
the sum of the operands by 1 modulo 2n + 1. Therefore, to
derive the two final summands decreased by 1, we can just
not add any correction factor. Note that in this case apart



 
Figure 2. An RG(9, 23+1) designed (a) accord-
ing to [15] and (b) according to the proposed
method.

from the area and time savings because of the replacement
of the final weighted adder with the augmented diminished-
1 adder of Figure 1, there are also area savings in the in-
verted EAC CSA tree, since it has one input operand less
and maybe further time savings, if the CSA tree depth is
reduced due to the reduction of the operands.

Example 1. Consider the design of an RG(9, 23+1) for A =
a8a7 . . . a0. According to [15] the input bits are partitioned
in three groups : g0 = {a2, a1, a0}, g1 = {a5, a4, a3} and
g2 = {a8, a7, a6}. The bits of g1 are then inverted and
along with the bits of the other groups and a total correction
factor are the inputs of an inverted EAC CSA tree. The total
correction factor that the architecture of [15] requires is 0,
but its addition can not be omitted since this would alter the
number of inverted EACs. The adder tree provides two final
summands that are the inputs of a weighted modulo 23 + 1
adder designed according to [2]. The design of the RG ac-
cording to [15] is shown in Figure 2.a. Blocks labeled as
HA and FA indicate half and full adders, respectively. In the
proposed architecture we do not need to add any correction
and therefore the number of the input operands of the adder
tree is reduced. The derived RG is shown in Figure 2.b.
Apart from the savings in both area and time because of
the use of the proposed augmented diminished-1 adder in-
stead of the proposal of [2], savings in both area and time
result from the simplified adder tree required. Considering
the proposed architecture and as an example the value A =
14310 = 0100011112, we have that the final operands at the
inputs of the proposed augmented diminished-1 adder are
011 and 100. Since these are complimentary, the most sig-
nificant bit of the residue is 1. The rest bits are computed by
the diminished-1 addition of the final operands, which pro-

vides 000 at the least significant bit positions. We therefore
get |143|23+1 = 10002 = 810. �

3.2 Novel Weighted Multi-operand mod-
ulo 2n + 1 Adders

One of the arithmetic components that has been heavily
researched in residue arithmetic is the multi-operand mod-
ulo adder (MOMA). Hardware support for multi-operand
modulo addition is highly appreciated in several multiply-
and-add intensive computations, such as digital filtering,
convolution estimation and FFT transforms. The first ef-
fort for a weighted MOMA appeared in [18], but required
several parallel-adders connected in series. The problem
of designing MOMAs for generalized moduli was attacked
in [1, 8, 10, 15]. The architecture of [15] is currently con-
sidered the most efficient for modulo 2n + 1. It uses an
inverted EAC CSA tree for reducing the k summands along
with a total correction factor into two final operands. Un-
fortunately, for the addition of the latter it requires two par-
allel adders connected in series since it uses the architec-
ture of [2] as the final weighted adder. One can achieve
significant savings in both area and delay by replacing the
final adder of [15] with the augmented diminished-1 adder
of Figure 1. The modifications required for this replace-
ment are analyzed in detail below and are shown to be small
enough.

We first consider that the input operands are n bits
wide. According to the analysis of section 2.3, if two n-bit
weighted operands are driven to a diminished-1 adder, this
will output their modulo 2n + 1 sum increased by 1. Sup-
pose now the addition of k n-bit weighted operands. This
can obviously be achieved by diminished-1 additions, that
will provide the modulo 2n + 1 sum increased by (k − 1)
(irrespectively if the additions are carried out in parallel or
in series). For deriving the correct sum, we can use one fur-
ther addition (in fact a subtraction). Since however this will
also increase by 1 the expected sum, in this last addition we
have to add a correction factor of | − k|2n+1. Obviously,
if | − k|2n+1 = | − 1|2n+1 = 2n this last addition is not
required. Finally, a (n + 1)-bit weighted result can be de-
rived by using an augmented diminished-1 adder for the last
addition.
Example 2. Consider the multi-operand modulo 23 + 1
weighted addition of the 3-bit operands A = 710 = 1112,
B = 410 = 1002, C = 510 = 1012 and D = 010 =
0002. Adding A with B and C with D in diminished-
1 adders, will provide the sums S1 = 310 = 0112 and
S2 = 610 = 1102, respectively. Then, adding these together
by a diminished-1 adder will provide R = 110 = 0012. Fi-
nally, a correction factor of E = | − k|9 is added. Since
k = 4, we have that E = | − k|9 = 510 = 1012. The
addition of R with E, in an augmented diminished-1 adder



yields the expected result 01112 = 710. �
Example 3. Consider the multi-operand modulo 22 + 1
weighted addition of the 2-bit operands A,B,C,D,E and
F , with A = B = D = F = 110 = 012, C = 310 = 112

and E = 010 = 002. Adding A with B, C with D and
E with F in diminished-1 adders, will provide the sums
S1 = 310 = 112, S2 = 010 = 002 and S3 = 210 = 102

respectively. The diminished-1 addition of S2 and S3 will
result in S4 = 310 = 112. Since there are 6 input operands
and | − 6|22+1 = | − 1|22+1 = 4, no correction factor is
required. To obtain the result we need to add S1 and S4 in
an augmented diminished-1 adder that will provide the ex-
pected result 0102 = 210. �

Instead of using in series or parallel diminished-1 adders,
the multi-operand diminished-1 addition described above
can be achieved by a diminished-1 MOMA. In [6] it was
shown that a diminished-1 MOMA can be implemented
by an inverted EAC CSA tree and a final diminished-1
adder. From the above analysis, we conclude that an n-
bit weighted MOMA(k, 2n + 1), can be derived by using a
diminished-1 MOMA(k + 1, 2n + 1) using :

• the correction factor E which is equal to |−k|2n+1, as
the (k + 1)-th summand and

• the augmented diminished-1 adder introduced earlier
as the final adder.

As explained earlier, a diminished-1 MOMA(k, 2n + 1) is
required when | − k|2n+1 = | − 1|2n+1 = 2n.

In the following we extend the above scheme to also ac-
count for (n+1)-bit operands. Since in modulo 2n+1 arith-
metic the most significant bit of an operand is 1 only when
the value of the operand is 2n and given that |2n|2n+1 =
−1, we can still use in the previously described MOMA the
n least significant bits of these operands and decrease the
correction factor E according to the number of operands
that have their most significant bit equal to 1. That is, if only
one operand is equal to 2n, the correction factor should be
| − k − 1|2n+1, if two operands are equal to 2n, the correc-
tion factor should be | − k− 2|2n+1 and so on. Therefore, a
combinational circuit must be used which accepts the most
significant bits of the k operands and outputs the correction
factor that should be used.
Example 4. Consider the multi-operand modulo 23 + 1 ad-
dition of the 4-bit operands A = 810 = 10002, B = 410 =
01002, C = 610 = 01102 and D = 310 = 00112. Let
a3, b3, c3 and d3 denote the most significant bits of the in-
put operands respectively and let a2a1a0, b2b1b0, c2c1c0,
d2d1d0 denote their rest bits. Figure 3 presents the proposed
implementation for a weighted MOMA(4, 23 + 1). On the
left of the figure, a small circuit based on half adder blocks
(labeled HA in Figure 3) and simple logic gates is used to
derive the correction factor that should be used. The circuit
is actually a modified 1s counter. The inverted EAC CSA
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Figure 3. Proposed weighted MOMA(4, 23+1).

tree is shown on the right. It reduces the summands in two
final operands that are added in an augmented diminished-
1 adder. For the values of our example we derive that the
correction factor E = e2e1e0 computed by the circuit is
4 = | − 4 − 1|23+1. When used in the adder tree, the
two final operands that result are 0002 and 0102. The aug-
mented diminished-1 adder then produces the expected sum
00112 = 310. �

Finally, it should be noted that :

• since the correction factor is derived later than the rest
of the summands it should be driven to the last stage of
the inverted EAC CSA tree.

• since the correction factor can always be derived by
an 1s counter with a translator at its outputs composed
of single gates, it can always be derived earlier than
needed in the CSA tree and therefore does not add any
delay on the critical path.

• since the correction factor can receive all values in the
[| − 2k|2n+1, | − k|2n+1] range, in few MOMA cases
a value of 2n is possible. In these cases the com-
binational circuit must be designed so as to provide
a (n + 1)-bit correction factor. The most significant
bit of this correction factor, should be used to control
a multiplexer that drives the inputs of the augmented
diminished-1 adder. If this bit is 0, then the inputs of
the augmented diminished-1 adder are driven by the
last stage of the CSA tree, that is, the stage used to
add the remaining bits of the correction factor. If this
bit is 1, then the inputs of the augmented diminished-1
adder are driven directly by the inputs of the last stage



Table 3. RG experimental results
RG [15] Proposed Savings

k n Delay (ns) Area (µm2) Delay (ns) Area (µm2) Delay (%) Area (%)

8 4 2.04 5228 1.05 3590 48.5 31.3
16 4 2.77 8708 1.83 6928 33.9 20.4
32 4 3.16 15774 2.17 14250 31.3 9.7

16 8 2.43 11151 1.27 7940 47.7 28.8
32 8 3.17 18030 2.05 14506 35.3 19.5
64 8 3.54 32301 2.40 28878 32.2 10.6

32 16 2.87 23690 1.49 17250 48.1 27.2
64 16 3.64 37037 2.26 30415 37.9 17.9

128 16 4.00 66220 2.62 59361 34.5 10.4

Table 4. MOMA experimental results
MOMA [15] Proposed Savings
k n Delay (ns) Area (µm2) Delay (ns) Area (µm2) Delay (%) Area (%)

4 4 2.93 10155 1.90 7655 35.2 24.6
8 4 3.58 18856 2.59 15550 27.7 17.5

12 4 4.01 26373 3.13 23528 21.9 10.8

4 8 3.30 19567 2.07 15010 37.3 23.3
8 8 3.94 35647 2.77 29386 29.7 17.6

12 8 4.34 50230 3.28 42676 24.4 15.0

4 16 3.68 39379 2.27 30252 38.3 23.2
8 16 4.36 70444 2.99 57711 31.4 18.1

12 16 4.79 97505 3.44 83942 28.2 13.9

of the CSA tree, that is, without the addition of any
correction factor.

4 Comparisons

In this section, we compare the architectures derived in
Section 3 for residue generators and multi-operand modulo
adders against those proposed in [15].

The proposed architectures as well as the architectures
of [15] were described in HDL for 9 different pairs (k, n)
of the number of bits k (in case of RGs) or of the number of
operands k (in case of (n + 1)-bit MOMAs) and the word
length n. All binary adders used in these descriptions fol-
low the Kogge-Stone [11] parallel-prefix carry computation
architecture whereas all diminished-1 adders used follow
the parallel-prefix carry computation of [22]. After simu-
lating the resulting descriptions, the designs were mapped
to a CMOS standard cell library (180nm, 6-metal layer, 1.8
V) assuming typical case process parameters. A bottom-up
approach was followed during mapping. Once a hierarchy
level was mapped and optimized for delay and area, ”don’t
touch” primitives were applied to it, for preserving the de-

scription of each architecture as much as possible. The de-
rived results are given in Tables 3 and 4. All delay results
are expressed in ns whereas all area results are expressed in
µm2.

The results show that in every examined case the pro-
posed designs outperform those of [15] in both delay and
area. The proposed RG circuits are on the average 39%
faster and 20% smaller than those of [15], while the pro-
posed MOMA circuits are 31% faster and 18% smaller.

5 Conclusions

This paper has shown that we can replace any weighted
modulo 2n + 1 adder for n-bit operands with an augmented
diminished-1 adder that will output the correct result pro-
vided that the sum of its input operands has been decreased
by 1. Given the current state of the art in the architectures
proposed for weighted and diminished-1 adders, this re-
placement leads to smaller and faster designs provided that
the decrement of the input operands can be performed with
small or no cost.

We examined two applications of this replacement,



namely residue generators and multi-operand weighted
modulo adders. In the first case, no circuitry is required
at all for decreasing the input operands’ sum; moreover,
in some cases it is more efficient in both area and delay
terms to derive the decreased input operands’ sum than the
weighted operands’ sum. In the second case, a small com-
binational circuit is required that does not add any delay on
the critical path of the multi-operand modulo adder.

The experimental results, derived by implementing the
proposed residue generators and multi-operand weighted
modulo adders in static CMOS, indicate that on the aver-
age, the proposed approach for residue generators offers ap-
proximately 39% and 20% savings in the delay and the area
compared to the currently most efficient proposal, respec-
tively. The corresponding savings for multi-operand mod-
ulo adders are 31% and 18% on the average.

The application of the augmented diminished-1 adder in
other weighted modulo components is currently under in-
vestigation.
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