
Efficient Modulo 2n + 1 Multi-Operand Adders
H. T. Vergos

Computer Engineering & Informatics Dept.
University of Patras,
26500 Patras, Greece

Email: vergos@ceid.upatras.gr

D. Bakalis
Department of Physics

University of Patras
26500 Patras, Greece

Email: bakalis@physics.upatras.gr

C. Efstathiou
Informatics Dept.,

ATEI of Athens
12210 Athens, Greece
Email: cefsta@teiath.gr

Abstract— A new architecture for modulo 2n+1 multi-operand
addition (MOMA) of weighted operands is introduced. It is
based on the use of a translator circuit that enables to use
n-bit operations for performing the weighted multi-operand
addition. Our experimental results indicate that the proposed
MOMAs offer significant savings in execution time compared to
the previously proposed solutions that either require two parallel
additions or a carry-save adder tree with twice the depth of the
proposed while they can be implemented in less area in most
cases.

I. INTRODUCTION

Arithmetic modulo 2n +1 is used in pseudorandom number
generation, cryptography [1], convolution computations with-
out round-off errors [2] but is most commonly met as a part
of a residue number system (RNS) [3], which is an arithmetic
system well-suited to applications in which the operations are
limited to addition, subtraction and multiplication. The RNS
has been adopted in the design of digital signal processors [3],
[4], FIR filters [5] and communication components [6].

Three-moduli RNS bases of the {2n − 1, 2n, 2n + 1} form
have received significant attention, mainly due to the existence
of very efficient combinational converters from / to the binary
system. In these RNSs the execution delay is dictated by the
modulo 2n + 1 channel, because this has to handle (n + 1)-
bit wide operands. The diminished-1 representation [7] attacks
this problem, by having each operand represented decreased by
one compared to its weighted representation and by deriving
the results in an alternative manner when any operand or result
is zero. Let A and B denote two (n + 1)-bit operands, such
that 0 < A, B ≤ 2n. In the diminished-1 representation, A�

and B� are used to represent A and B, with A� = |A−1|2n+1

and B� = |B − 1|2n+1 respectively. Their diminished-1 sum
S� is computed as :

S� = |S−1|2n+1 = |A+B−1|2n+1 = |A�+B�+1|2n+1 (1)

by a diminished-1 (equivalently one’s complement or end-
around-carry) adder [8]. The need for handling zero operands
and results separately, as well as, the need for time and
hardware consuming input / output translators from / to the
weighted to / from the diminished-1 representation, make
the diminished-1 representation attractive only when a large
number of calculations takes place before a new conversion.
In all other cases the weighted representation is more suitable.

One of the arithmetic components that has been heavily
researched in residue arithmetic is the multi-operand modulo

adder (MOMA). Hardware support for multi-operand modulo
addition is highly appreciated in several multiply-and-add
intensive computations, such as digital filtering, convolution
estimation and FFT transforms. The first effort for a modulo
2n + 1 MOMA for operands in the weighted representation
(hereafter denoted as weighted MOMA) appeared in [9], but
required several parallel-adders connected in series. The prob-
lem of designing MOMAs for generalized moduli was attacked
in [10]–[12]. Unfortunately, the architecture proposed for the
weighted MOMA in [12], although more efficient than those
of [10], [11], still requires two parallel adders connected in
series to provide its result. The need for two additions was
canceled in [13], at the cost of doubling each carry-save adder
(CSA) stage of the tree and requiring four carry-lookahead
units at the final stage that operate in parallel. On the other
hand, modulo 2n+1 MOMAs for operands in the diminished-1
representation (hereafter denoted as diminished MOMA) have
been shown a lot easier to design. In [14] it was shown that a
diminished MOMA can be implemented by an inverted end-
around carry (EAC) CSA tree and a final diminished-1 adder.
In the following a k-operand multi-operand adder modulo
2n + 1, will be denoted as a MOMA(k, 2n + 1).

In this paper, a new architecture is introduced for weighted
MOMAs. A translator circuit is proposed that enables to
express the modulo 2n + 1 sum of weighted operands as
a congruent modulo 2n + 1 sum of n-bit operands. The
required translator circuit is shown to be a simplified CSA
stage; therefore, it has a very small area and time complexity.
After the translation, a diminished MOMA is used with minor
changes at the final parallel adder so as to provide a correct
(n + 1)-bit weighted result. Since the proposed architecture
uses just one parallel addition and simple CSA stages, it
outperforms all previous proposals for weighted MOMAs.

II. NEW MOMA ARCHITECTURE DERIVATION

In this section we propose a new architecture for a weighted
MOMA, that consists of a translation stage, an inverted EAC
CSA tree and a final diminished-1 adder.

A. The Translator Circuit

Suppose that A = anan−1an−2 . . . a1a0 and B =
bnbn−1bn−2 . . . b1b0 denote two operands in weighted repre-
sentation, with 0 ≤ A, B ≤ 2n and An−1 and Bn−1 denote
the n-bit vectors composed by the least significant bits of A

and B respectively. For the weighted modulo 2n + 1 addition
of A, B it then holds that :∣∣A + B

∣∣
2n+1

= |(2n × an + An−1) + (2n × bn + Bn−1)|2n+1

= |2n × (an + bn) + An−1 + Bn−1|2n+1 (2)

Let sn and cn denote the sum and carry bits of the (an+bn)×
2n addition contained in (2) respectively and let x denote the
complement of x. sn and cn are bits with weights 2n and
2n+1 respectively. Using them in (2) produces :
|A + B|2n+1 =

∣∣2n+1cn + 2nsn + An−1 + Bn−1

∣∣
2n+1

=

= |An−1 + Bn−1 − 2cn − sn|2n+1 . (3)

Since for x ∈ {0, 1} it holds that :
| − x|2n+1 = |2n + 1 − x|2n+1 = |x − 1|2n+1 (4)

from (3) we can further derive that :∣∣A + B
∣∣
2n+1

= |An−1 + Bn−1 + 2cn + sn − 3|2n+1

= |An−1 + Bn−1 + 2cn + sn + 2n − 2|2n+1

= |An−1 + Bn−1 + (2n − 4 + 2cn + sn) + 2|2n+1

=
∣∣|An−1 + Bn−1 + D + 1|2n+1 + 1

∣∣
2n+1

(5)

where D = 2n − 4 + 2cn + sn, that is the n-bit vector
111 . . . 1cnsn.

Let Y � = yn−1yn−2 . . . y00 and U = un−1un−2 . . . u0

denote the carry and sum output vectors of the carry-save
addition of An−1, Bn−1 and D indicated in (5), respectively.
It then holds that :∣∣A+B

∣∣
2n+1

=
∣∣|An−1 + Bn−1 + D + 1|2n+1 + 1

∣∣
2n+1

=

∣∣∣∣∣∣
∣∣∣∣∣

n∑
i=1

(2i × yi−1) +

n−1∑
i=0

(2i × ui) + 1

∣∣∣∣∣
2n+1

+ 1

∣∣∣∣∣∣
2n+1

=

∣∣∣∣∣∣
∣∣∣∣∣
n−1∑
i=1

(
2i × (yi−1 + ui)

)
+ u0 − yn−1 + 1

∣∣∣∣∣
2n+1

+ 1

∣∣∣∣∣∣
2n+1

=

∣∣∣∣∣∣
∣∣∣∣∣
n−1∑
i=1

(
2i × (yi−1 + ui)

)
+ u0 + yn−1

∣∣∣∣∣
2n+1

+ 1

∣∣∣∣∣∣
2n+1

=
∣∣|Y + U |2n+1 + 1

∣∣
2n+1

= |Y + U + 1|2n+1 , (6)

where Y = yn−2yn−3 . . . y0yn−1. That is, the sum of the
weighted operands A and B modulo 2n + 1 is congruent to
the modulo 2n + 1 sum of the n-bit vectors Y and U plus
1. We can therefore use the inverted end-around carry save
adder stage of Fig. 1, which accepts the vectors An−1, Bn−1

and D and produces Y and U as a translator circuit from
the weighted to an n-bit pair representation provided that a
correction equal to 1 is also taken into account. The (n − 2)
leftmost full adders (FAs) of Fig. 1, have an area and time
complexity equal to that of a half adder since their input bits
coming from operand D are equal to 1. The two rightmost
FAs along with the accompanying NAND and XNOR gates
can also be simplified (Fig. 2 presents examples of simplified
circuits) considering that an (bn) and a1 or a0 (and b1 or b0)
can not be simultaneously at 1.

Generalizing the above, given k (n + 1)-bit numbers, sup-
pose X1,X2, . . . , Xk, with 0 ≤ X1,X2, . . . , Xk ≤ 2n we

FAn-1 FAn-2 FA1 FA0

an-1
bn-1

dn-1 an-2
bn-2

dn-2 a1
b1

d1 a0
b0

d0

un-1 yn-2 un-2 yn-3 u1 y0 u0 yn-1

Fig. 1. Translator circuit

FA1

b1a1

an bn

u1y1

FA0

b0a0

an bn

u0y0

a0 b0 bn an

y0 u0

a1 b1 bn an

y1 u1

Fig. 2. Simplified circuitry for the two least significant bit positions.

may group them in
⌈

k
2

⌉
pairs and use

⌈
k
2

⌉
translator circuits

in parallel (if k is odd, then Xk is paired with 0) to derive
⌈

k
2

⌉
pairs of n-bit vectors Y1, Y2, . . . , Y� k

2 � and U1, U2, . . . , U� k
2 �,

hereafter referred to as diminished vectors, such that :

∣∣X1 + X2 + . . . + Xk

∣∣
2n+1

=

∣∣∣∣∣∣∣
� k

2 �∑
i=1

Yi +

� k
2 �∑

i=1

Ui +

⌈
k

2

⌉∣∣∣∣∣∣∣
2n+1

(7)

B. The Inverted EAC CSA Tree

In [14], an inverted EAC CSA Dadda tree was proposed for
the modulo 2n + 1 reduction of multiple n-bit vectors in two
final addends. We also adopt an inverted EAC CSA Dadda
tree as our reduction vehicle.

In our case, we need to add in modulo 2n + 1 arith-
metic, 2

⌈
k
2

⌉
+ 1 vectors in total, that is, the diminished

vectors and a vector, suppose COR, which represents the
total correction. COR includes both the translators correction,(∣∣⌈k

2

⌉∣∣
2n+1

term of (7)
)

, and the correction introduced by the
inverted EAC CSA tree. The use of an inverted EAC CSA tree
is based on the observation that the carry output at the most
significant bit position, suppose cn, that has a weight of 2n,
can be complemented and added at the least significant bit
position in the next stage, provided that a correction equal to
2n is taken into account, since it holds that :

|cn2n|2n+1 = |−cn|2n+1 = |2n + cn|2n+1 .

Taking into account that each CSA reduces the number of
addends by one, for attaining two final addends from the
(2

⌈
k
2

⌉
+ 1) vectors of our EAC CSA tree, (2

⌈
k
2

⌉− 1) CSAs
are required, each one providing an inverted feedback carry.
Therefore, the correction required by our EAC CSA tree is
2n × (

2
⌈

k
2

⌉ − 1
)
.

Let F and G denote the two final addends produced by the
inverted EAC CSA tree. From the above analysis we get that :∣∣∣∣∣∣∣∣

⌈
k
2

⌉
∑
i=1

Yi +

⌈
k
2

⌉
∑
i=1

Ui + COR

∣∣∣∣∣∣∣∣
2n+1

=

∣∣∣∣F + G + 2
n ×

(
2

⌈
k

2

⌉
− 1

)∣∣∣∣
2n+1

or equivalently that :
∣∣∣

⌈
k
2

⌉
∑
i=1

Yi +

⌈
k
2

⌉
∑
i=1

Ui +

⌈
k

2

⌉ ∣∣∣
2n+1

=

=

∣∣∣∣F + G −
(

2

⌈
k

2

⌉
− 1

)
− COR +

⌈
k

2

⌉∣∣∣∣
2n+1

U1 = 0 1 1 1
Y1 = 1 0 0 0
U2 = 1 0 1 0

0 1 0 1
1 0 1 0 0

1st adder
stage

S
C

1 0 0 0
0 1 0 1 1

2nd adder
stage

S
C

1 0 0 1
0 1 1 0 1

S
C

1 0 1 0
1 0 0 1 0

S
C

3rd adder
stage

4th adder
stage

0 1 0 1
1 0 1 0 0

S = F
C = GY2 = 1 0 0 1

U3 = 0 1 1 1
Y3 = 0 0 0 0

COR = 1 1 1 0
1 1 0 1

Fig. 3. Inverted EAC CSA tree operation

which according to (7), results into :
∣∣X1 + X2 + . . . + Xk

∣∣
2n+1 =

∣∣∣∣(F + G + 1) −
⌈

k

2

⌉
− COR

∣∣∣∣
2n+1

(8)

C. The Final Stage Adder

If we use as COR the constant
(− ⌈

k
2

⌉)
, (8) takes the form :∣∣X1 + X2 + . . . + Xk

∣∣
2n+1

= |F + G + 1|2n+1 (9)

that according to (1) reveals that we can derive the n least
significant bits of the weighted MOMA(k, 2n + 1) result, by
adding F and G in a diminished-1 parallel adder.

The most significant bit of the weighted MOMA(k, 2n +1),
should be 1, only when |X1 + X2 + . . . + Xk|2n+1 = 2n, or
equivalently when |F +G+1|2n+1 = 2n or since 0 ≤ F, G ≤
2n − 1 when F + G = 2n − 1, that is, when F and G are bit-
wise complementary. This condition can be easily detected as
the logical AND of the XOR of the bits of F and G with the
same weight. Since in every fast adder architecture there is a
preprocessing stage that computes the half-sum term, that is,
the XOR of the corresponding input operands bits, the extra
hardware required for the most significant bit of the weighted
addition is small. Note that this operation will not add any
delay on the critical path of the adder. In some adder cases
(known as XOR adders) the half sum term is also used as
the carry propagate term. The group propagate terms in these
adders are the logical AND of the half-sum terms and therefore
no extra hardware is required for the derivation of the most
significant bit of the weighted MOMA.

D. An Example of the Proposed Weighted MOMA

We exemplify the use of the architecture derived in the
previous section, by designing a weighted MOMA(6,17). Let
the input operands be denoted by X1 up to X6. Let us further
consider the input vector for these operands, X1 = X4 = 410,
X2 = 1210, X3 = X5 = 1610 and X6 = 910.

Three translator circuits are used; each accepts a pair of
operands and a D vector. For the pairing (X1,X2), (X3,X4)
and (X5,X6), the D vectors that are computed are 11112,
11102 and 11102 respectively. The translator circuits then
produce the vectors U1 = 01112, Y1 = 10002, U2 =
10102, Y2 = 10012, U3 = 01112 and Y3 = 00002.

The Ui and Yi vectors along with the correction vector
COR = | − 3|17 = 1410 = 11102 are then used in the
inverted EAC CSA tree. We assume that this is designed as
a Dadda tree and its operation is indicated in Fig. 3. S and
C respectively represent the sum and carry vectors produced
by each CSA of the tree. The most significant bit of the carry
vector is complemented and used at the least significant bit
position in the next addition. These bits are circled in Fig. 3.

The two resulting vectors F and G are then used as inputs
to an augmented diminished-1 parallel adder. Since these are
not complementary, the most significant bit of the result is 0.
The diminished-1 adder is an adder that increments the integer
sum of its input vectors when the carry output of their integer
addition is 0 and leaves it unchanged otherwise. In our case,
since F = 01012 and G = 01002, the diminished-1 adder will
provide 10102 as the n least significant bits of the result.

III. COMPARISONS

In this section, we compare the proposed MOMA architec-
ture against those proposed in [12], [13]. Both qualitative and
quantitative comparison results are presented.

For our qualitative comparisons, we use the simple unit-gate
model proposed in [15]. This model assumes that each two-
input gate, excluding exclusive-OR, accounts as one equivalent
gate for both area and delay. An exclusive-OR gate accounts
for two equivalent gates for both area and delay. Finally, a
2 to 1 multiplexer accounts for two equivalent gate delays
and has an area complexity of three equivalent gates. Table I
summarizes the area and delay estimates that have been
derived, using the following assumptions :

i. All binary adders used follow the Kogge-Stone [16]
parallel-prefix carry computation architecture.

ii. All diminished adders used follow the parallel-prefix carry
computation architecture of [8].

iii. θ(a) denotes the minimum number of stages in a CSA
tree that processes a input operands.

For various test cases, Table II presents the attained unit-
gate delay and area estimates in equivalent gates. From the
estimates it becomes obvious that the MOMAs designed
according to either the proposed architecture or the archi-
tecture presented in [12] are far faster and smaller than the
corresponding circuits proposed in [13]. This is because the
proposal of [13] attacks the design of MOMAs for arbitrary
moduli. Therefore, in contrast to the other two architectures, it
does not effectively exploit the properties of arithmetic modulo
2n + 1. We therefore do not consider this architecture in our
quantitative results.

The estimates also indicate that the proposed architecture
heavily outperforms the proposal of [12] in operation speed.
This is attributed to the fact that the proposed architecture re-
moves the second parallel adder (subtractor) out of the critical
path of [12]. The translators added have a delay complexity
almost equal to the final selection multiplexors of [12]. On
the average of the examined cases, the proposed architecture
leads to 32% faster MOMAs. Considering the area complexity,
the proposed architecture leads to smaller implementations,
when n and k are not both large. For example, the proposed
MOMA(4,17) requires 21% less area than the corresponding
circuit of [12]. On the other hand, a large value of k implies
a large number of translators while a large value of n results
in wider translators. When either k or n increases, the area
required by the proposed MOMAs also increases and may
exceed the savings of the second parallel adder (subtractor)
and the multiplexors required by [12].

TABLE I

AREA AND DELAY ESTIMATIONS PROVIDED BY THE UNIT-GATE MODEL

MOMA(k, 2n + 1)
Architecture Delay Area

[13] 14 [θ(k) + 1] + 2 log(n + 4) 35k(n + 1) + 3(n + 2) log(n + 2)+
3(n + 3) log(n + 3) + 6(n + 4) log(n + 4) − 24n + 52

[12] 4 [θ(2k + 1) − 1] + 7k(n + 1) + 3n log n + 3(n + 1) log(n + 1) − 2n + 20
2 log n + 2 log(n + 1) + 10

Proposed 4θ
(
2

⌈
k
2

⌉
+ 1

)
+ 2 log n + 6 17

⌈
k
2

⌉
n + 6

⌈
k
2

⌉
+ 9

2
n log n − 11

2
n + 5

TABLE II

QUALITATIVE COMPARISON RESULTS - EQUIVALENT GATES

MOMA [13] [12] Proposed

k n Delay Area Delay Area Delay Area
4 4 48 905 31 211 22 167
8 4 76 1605 39 351 26 315
12 4 90 2305 43 491 30 463
4 8 49 1592 34 414 24 353
8 8 77 2852 42 666 28 637
12 8 91 4112 46 918 32 921
4 16 51 3034 38 864 26 761
8 16 79 5414 46 1340 30 1317
12 16 93 7794 50 1816 34 1873

TABLE III

QUANTITATIVE COMPARISON RESULTS

MOMA [12] Proposed Savings (%)

k n Delay Area Delay Area Delay Area
4 4 2.93 10155 2.16 7627 26.3 24.9
8 4 3.58 18856 2.55 15209 28.8 19.3
12 4 4.01 26373 2.86 22974 28.7 12.9
4 8 3.30 19567 2.35 15624 28.8 20.2
8 8 3.94 35647 2.74 30410 30.5 14.7
12 8 4.34 50230 3.08 45998 29.0 8.4
4 16 3.68 39379 2.57 32508 30.2 17.4
8 16 4.36 70444 2.95 62203 32.3 11.7
12 16 4.79 97505 3.26 93321 31.9 4.3

For our quantitative results, an HDL generator was de-
veloped for providing HDL descriptions for the MOMAs
proposed and those of [12]. After simulating the resulting
descriptions, the designs were mapped to a CMOS standard
cell library (180nm, 6-metal layer, 1.8 V), assuming typi-
cal process parameters. A bottom-up approach was followed
during mapping. Once a hierarchy level was mapped and
optimized for delay and area, “don’t touch” primitives were
applied to it, for preserving the architecture in each description
as much as possible. The derived results are given in Table III.
The delay results are expressed in ns, while those for the
implementation area in μm2. The attained results indicate that
on the average of the examined cases, the proposed MOMAs
are 30% faster and in parallel require 15% less implementation
area.

IV. CONCLUSIONS

In this manuscript we have proposed a new architecture for
designing multi-operand modulo 2n+1 adders that is based on
the use of translator circuits that enable to perform weighted

operand addition using congruent n-bit additions. The derived
architecture leads to the fastest proposed designs, removing

a whole parallel adder out of the critical path of the fastest
earlier proposal. Our quantitative results indicate that, on the
average of the examined cases, savings of 30% in the execution
time result with parallel savings in the implementation area,
that are significant, when the number of operands is not very
large or the operands are not very wide.

REFERENCES

[1] H. Nozaki et al., “Implementation of RSA Algorithm based on RNS
Montgomery Multiplication,” in Proc. of the 3rd International Workshop
on Cryptographic Hardware and Embedded Systems, Lecture Notes in
Computer Science Vol. 2162, Springer-Verlag, 2001, pp. 364–376.

[2] Y. Ma, “A Simplified Architecture for Modulo (2n +1) Multiplication,”
IEEE Trans. Comput., vol. 47, no. 3, pp. 333–337, 1998.

[3] M. A. Soderstrand et al., Residue Number System Arithmetic: Modern
Applications in Digital Signal Processing, IEEE Press, 1986.

[4] J. Ramirez et al., “RNS-enabled Digital Signal Processor Design,”
Electronics Letters, vol. 38, no. 6, pp. 266–268, 2002.

[5] G. C. Cardarilli, Al. Nannarelli, and M. Re, “Reducing Power Dissipa-
tion in FIR Filters using the Residue Number System,” in Proc. of the
IEEE 43rd IEEE Midwest Symposium on Circuits and Systems, 2000,
pp. 320–323.

[6] J. Ramirez et al., “Fast RNS FPL-based Communications Receiver
Design and Implementation,” in Proc. of the 12th International
Conference on Field Programmable Logic, Lecture Notes in Computer
Science Vol. 2438, Springer-Verlag, 2002, pp. 472–481.

[7] L. M. Leibowitz, “A Simplified Binary Arithmetic for the Fermat
Number Transform,” IEEE Trans. Acoust., Speech, Signal Processing,
vol. 24, pp. 356–359, 1976.

[8] H. T. Vergos, C. Efstathiou, and D. Nikolos, “Diminished-One Modulo
2n + 1 Adder Design,” IEEE Trans. Comput., vol. 51, pp. 1389–1399,
2002.

[9] L. Skavantzos, “Design of Multi-operand Carry-Save Adders for
Arithmetic Modulo (2n+1),” Electronics Letters, pp. 1152–1153, 1989.

[10] K. E. Elleithy, M. A. Bayoumi, and K. P. Lee, “θ(log n) Architectures
for rns Arithmetic Decoding,” in Proc. of the 9th IEEE Symposium on
Computer Arithmetic, 1989, pp. 202–209.

[11] C. K. Koc and C. Y. Hung, “Multi-operand Modulo Addition Using
Carry-Save Adders,” Electronics Letters, vol. 26, pp. 361–363, 1990.

[12] S. J. Piestrak, “Design of Residue Generators and Multioperand Modular
Adders using Carry-Save Adders,” IEEE Trans. Comput., vol. 43, pp.
68–77, 1994.

[13] G. Alia and E. Martineli, “Designing Multioperand Modular Adders,”
Electronics Letters, vol. 32, pp. 22–23, 1996.

[14] C. Efstathiou, H. T. Vergos, G. Dimitrakopoulos, and D. Nikolos,
“Efficient Diminished-1 Modulo 2n + 1 Multipliers,” IEEE Trans.
Comput., vol. 54, no. 4, pp. 491–496, 2005.

[15] A. Tyagi, “A Reduced-Area Scheme for Carry-Select Adders,” IEEE
Trans. Comput., vol. 42, no. 10, pp. 1163–1170, 1993.

[16] P. M. Kogge and H. S. Stone, “A Parallel Algorithm for the Efficient
Solution of a General Class of Recurrence Equations,” IEEE Trans.
Comput., vol. C-22, pp. 786–792, 1973.

