
Novel Modulo 2n + 1 Multipliers ∗

H. T. Vergos
Computer Engineering and Informatics Dept.,

University of Patras, 26500 Patras, Greece.
vergos@ceid.upatras.gr

C. Efstathiou
Informatics Dept.,TEI of Athens,
12210 Egaleo, Athens, Greece.

cefsta@teiath.gr

Abstract

A new modulo 2n +1 multiplier architecture is proposed
for operands in the normal representation. The novel archi-
tecture is derived by showing that all required correction
factors can be merged into a single constant one and by
treating this, partly as a partial product and partly by the
final parallel adder. The proposed architecture utilizes a to-
tal of (n + 1) partial products, each n bits wide and is built
using an inverted end-around-carry, carry-save adder tree
and a final parallel adder.

1. Introduction

Residue arithmetic has found great applicability in num-
ber theoretic transforms (NTT), that are widely used for
convolution / correlation computations [1, 2, 3], crypto-
graphic algorithms [4] and fault-tolerant digital system de-
sign. Its main application field is however in the design of
specialized digital signal processors that adopt the residue
number system (RNS) [5, 6].

In particular, modulo 2n+1 arithmetic has been the focus
of many recent research manuscripts, because this modulus
is a part of the well-known three moduli set {2n−1, 2n, 2n+
1}, that has been extensively used in general and special
purpose RNS implementations. Efficient modulo 2n + 1
component design seems to be the more challenging field
for this moduli set, since the modulo 2n + 1 components
operate on wider operands than the rest two channels and
therefore form the execution bottleneck. To attack this prob-
lem, Leibowitz [1], introduced the diminished-1 representa-
tion. Under this representation each number is represented
decreased by 1, while zero operands need to be handled dis-
tinctly.

The prime moduli of the form 2n + 1 apart from being
useful for ordinary RNSs, are vital in the Fermat Number

∗This research was co-funded by the E.E. (75%) and by the Greek Gov-
ernment (25%), within the framework of the Education and Initial Voca-
tional Training Program : “Archimedes”.

Transform (FNT) and useful in cryptography. More specifi-
cally, the Fermat number 216+1 was chosen for the modulo
multiplier in [2, 3] and for the square–and–multiply mod-
ulo exponentiator in an implementation of the International
Data Encryption Algorithm [4].

Due to their applicability in the aforementioned fields,
numerous architectures have been proposed for modulo
2n + 1 components, including adders [7, 8], multi-operand
adders and residue generators [9], squarers [10] and multi-
pliers [11, 12, 13, 14, 15, 16, 17, 18, 19].

Although ROM-based structures can be used for com-
puting a modulo 2n + 1 product, the exponential growth
of the memory required, makes such solutions unsuitable
for medium and large values of n. In [11] it was instead
proposed that multiplication is carried out using a (n + 1)-
bit binary multiplier followed by a residue generation cir-
cuit. Although suitable even for large n, this solution is
not well suited for RNSs that use the {2n − 1, 2n, 2n + 1}
moduli set, given that the rest channels operate on a n × n
multiplication array. In [12], by observing that groups of
the (n + 1) × (n + 1) partial products array can not be
1 at the same time, the authors managed to reduce the re-
quired multiplication array down to n×n. The architecture
of [12] however, requires three n-bit parallel adders con-
nected in series followed by a final row of multiplexors.
In [13] diminished-1 multipliers with n-bit input operands
were considered. Apart from the multiplication array, a cir-
cuit that counts the zero partial products. Moreover, han-
dling of zero operands was not attacked.

The first try to apply radix-4 Booth recoding to modulo
2n + 1 multiplication appeared in [14]. The partial prod-
ucts used are (n + 1) bits wide. Two correction factors
need to be added in an extra carry save adder (CSA) stage
for result correction and a diminished-1 final parallel adder
with a carry input is also needed. Such an adder is imple-
mented by an additional CSA stage and a diminished-1 par-
allel adder. The multipliers presented in [15] also use radix-
4 Booth recoding but only require n bits for their partial
products. These multipliers depart from the diminished-1
discipline, since all operands are in normal form except the

Proceedings of the 9th EUROMICRO Conference on Digital System Design (DSD'06)
0-7695-2609-8/06 $20.00 © 2006

2n operand which is represented by the all 0s vector. This
is done for achieving an efficient design block for use in
the international data encryption algorithm (IDEA) block
cipher. Although in [15] a scheme is described, for using
the multipliers for normal / diminished-1 operands, this im-
plies a dedicated circuit that handles the 2n value in the case
of normal operands or the incorporation of a second parallel
modulo adder in that of the diminished-1 operands. Multi-
pliers with Booth recoding in which one operand uses nor-
mal representation, while the other the diminished-1 were
investigated in [16]. These multipliers are however specific
to the cryptographic application targeted.

Diminished-1 multipliers based on a (n×n) partial prod-
ucts array and a Dadda adder tree were investigated in [17]
and were analytically and experimentally shown to outper-
form those of [13] and [14]. Treatment of zero operands
was not however attacked. Modulo 2n + 1 multipliers for
both diminished-1 and normal operand representation with
treatment of zero operands have been presented in [18]. For
both cases, Booth recoding is employed to reduce the num-
ber of partial products into approximately the half. Both ar-
chitectures however, require a CSA stage for the addition of
a correction factor that is derived by a small dedicated com-
binational circuit, as well as, a final modulo parallel adder
similar to that of [13], that is, with a carry input. Further-
more, in the case of diminished-1 operands, another cor-
rection is also introduced. The analytical and experimen-
tal results presented in [18] show that the multipliers pro-
posed, outperform the earlier solutions of [14] and [15] if
the latter is adopted to diminished-1 or ordinary represen-
tation. Comparative results against [17] were not however
given. The analytical models for the delay and area pre-
sented in [17] and [18], reveal that the architecture of [17]
provides smaller multipliers. It also leads to faster designs
when n < 16 and to designs with the same delay as those
described in [18] for n ≥ 16. This should not be surprising,
since it is well-known [15] that although Booth recoding
leads to shallower adder tree (about two full adder stages
are saved on the critical path when the number of partial
products is cut in half), this saving is often compensated or
overwhelmed by the recoding logic and the addition of cor-
rection factors. Non-Booth encoded modulo 2n + 1 multi-
pliers have recently been investigated in [19]. Two architec-
tures have been proposed; one with n + 3 partial products
and one with n + 2 partial products.

In this manuscript, a novel modulo 2n + 1 multiplier ar-
chitecture is presented for input operands in the normal rep-
resentation. Our architecture is derived following the ob-
servations made in [12]. This earlier proposal is however
heavily improved by :

• using only one parallel adder instead of three after the
reduction of the partial products. This is achieved by
analytically deriving a single total correction factor. It

is shown that the total correction factor is a constant
and therefore, no extra circuit is required to compute it

• splitting the correction factor in two parts. One part
is introduced as a partial product, whereas the addi-
tion of the second is assigned to the final stage adder.
This enables to use a fast parallel-prefix inverted end-
around-carry (EAC) parallel adder [7] (equivalently, a
diminished-1 modulo 2n + 1 adder) as the final stage
adder.

The proposed architecture does not use Booth recoding
and utilizes a total of (n + 1) n-bit wide partial products.
The resulting multipliers obviously outperform the solu-
tions described in [19] in both area and delay, since they
use one or two partial products less. The proposed multi-
pliers are compared against those of [17], which according
to the discussion above should be considered the currently
most efficient ones. The results indicate that the proposed
multipliers offer the same or even higher operation speed
than those of [17], while being more compact. Consider-
ing that the proposed multipliers accept operands in normal
form while those of [17] accept operands in diminished-1
representation, it is clear that the proposed multipliers can
be used more efficiently since they do not require time- and
hardware-consuming input / output translators nor any han-
dling of zero operands.

2. Proposed Architecture

The proposed multiplier architecture is based on merging
the correction factors that result from the formation and the
reduction of the partial products, into a single correction
factor. This is described in detail below.

2.1. Partial Product Formation

Let A = anan−1 . . . a1a0 and B = bnbn−1 . . . b1b0 de-
note two (n + 1)-bit numbers in the range [0, 2n + 1). Ob-
viously, in the normal representation if an is 1 then all the
rest bits in the representation of A are 0 and the same is true
for the rest bits of B, if bn is 1.

Let |X|Y denote the modulo Y residue of X. For the mul-
tiplication of A with B, it holds :

R =
∣∣A × B

∣∣
2n+1

=

∣∣∣∣∣∣
n∑

i=0

ai2i
n∑

j=0

bj2j

∣∣∣∣∣∣
2n+1

=

∣∣∣∣∣∣
n∑

i=0

⎛
⎝ n∑

j=0

pi,j2i+j

⎞
⎠

∣∣∣∣∣∣
2n+1

(1)

where the partial product bit pi,j is the logical AND of ai

with bj . Relation (1) indicates that the partial products (PP)

Proceedings of the 9th EUROMICRO Conference on Digital System Design (DSD'06)
0-7695-2609-8/06 $20.00 © 2006

p0,0p1,0p2,0pn-2,0pn-1,0 ...

p0,1p1,1...

pn,0

pn-3,1pn-2,1pn-1,1pn,1

p0,2

p0,n-2

...pn-3,2pn-2,2pn-1,2pn,2

...

202122...2n-22n-12n2n+12n+2...22n-222n-122n

p1,n-2p2,n-2p3,n-2p4,n-2...pn,n-2

pn-1,n-1pn,n-1 ... p3,n-1 p2,n-1 p1,n-1 p0,n-1

pn-1,npn,n pn-2,n ... p0,np1,np2,n

A

B

C
D

Figure 1. (n + 1) × (n + 1) partial product matrix

matrix shown in Fig. 1 are required for modulo 2n +1 mul-
tiplication. The partial products matrix can be divided in the
four groups A, B, C and D shown in Fig. 1. Note that only
terms from one group can be 1 at the same time. Therefore,
instead of arithmetically added, terms from different groups
can be logically ORed [12].

Combining by logical OR (+, ⊕ and x are used hereafter
to denote logical OR, exclusive-OR and complement of x
respectively) the bits of the groups B and D, results into :

pn,i + pi,n = (an ⊕ bn)(ai + bi) = sqi

where s = an ⊕ bn and qi = ai + bi, with 0 ≤ i ≤ n − 1.
The terms sqi that overflow to the left of the column with
weight 2n−1 can then be moved to the column with weight
2i according to :

∣∣sqi2n+i
∣∣
2n+1

=
∣∣s(−qi2i)

∣∣
2n+1

=

=
∣∣s2i(2n + 1 − qi)

∣∣
2n+1

=

=
∣∣∣s(2i(2n + qi)

)∣∣∣
2n+1

=

=
∣∣sqi2i + Ci

∣∣
2n+1

where Ci is a correction factor imposed by each such repo-
sitioning, and is equal to Ci =

∣∣s2n2i
∣∣
2n+1

. The correction
factor, COR0, required for repositioning all sqi terms is
given by :

COR0 =

∣∣∣∣∣
n−1∑
i=0

Ci

∣∣∣∣∣
2n+1

=
∣∣s2n(2n − 1)

∣∣
2n+1

= 2s.

COR0 can be accounted for, by adding s into the column
with weight 21 of the partial product matrix.

Then, considering the partial products bits of group A,

since

∣∣pi,j2i+j
∣∣
2n+1

=
∣∣∣−pi,j2|i+j|n

∣∣∣
2n+1

=

=
∣∣∣(2n + 1 − pi,j)2|i+j|n

∣∣∣
2n+1

=

=
∣∣∣pi,j2|i+j|n + 2n2|i+j|n

∣∣∣
2n+1

all pi,j bits with n ≤ (i + j) ≤ 2n − 1 can also be inverted
and repositioned at the (i + j − n) column. A correction
factor of 2|i+j|n2n, should be taken into account for each
such complementation and repositioning. For computing
the correction factor, COR1, required for moving all pi,j

bits with n ≤ (i+j) ≤ 2n−1, it can be observed that there
is only one such bit in the second partial product of Fig. 1,
imposing a correction of 202n. The third partial product
has two such bits imposing a correction of (20 + 21)2n =
(23 − 1)2n and so on, up to the n-th partial product which
will require a correction factor equal to (20 + 11 + · · · +
2n−2)2n = (2n−1 − 1)2n. COR1 is therefore given by
summing all these required corrections :

COR1 = 2n(2(1 + 2 + · · · + 2n−2) − (n − 1)) =
= 2n(2n − n − 1) (2)

Finally, for a completely regular n × n partial product
matrix the term pn,n, needs to be repositioned. Since this
has a weight of 22n and

∣∣22n
∣∣
2n+1

= 1, it can be moved to
the rightmost column. Given that spi,j = 0, the terms s and
sqi can be ORed with a term pi,j of the same column.

The above analysis leads to the reduced matrix of partial
products (PPi) presented in Table 1, along with the cor-
rection factor indicated by (2) that needs to be taken into
account.

Proceedings of the 9th EUROMICRO Conference on Digital System Design (DSD'06)
0-7695-2609-8/06 $20.00 © 2006

Table 1. Reduced Partial Product Matrix
2n−1 2n−2 · · · 22 21 20

PP0 = pn−1,0 + sqn−1 pn−2,0 + sqn−2 · · · p2,0 + sq2 p1,0 + sq1 p0,0 + sq0 + pn,n

PP1 = pn−2,1 pn−3,1 · · · p1,1 p0,1 + s pn−1,1

PP2 = pn−3,2 pn−4,2 · · · p0,2 pn−1,2 pn−2,2

· ·
PPn−2 = p1,n−2 p0,n−2 · · · p4,n−2 p3,n−2 p2,n−2

PPn−1 = p0,n−1 pn−1,n−1 · · · p3,n−1 p2,n−1 p1,n−1

2.2. Partial product reduction

The n partial products of Table 1 and the total correction
factor, that is, n + 1 partial products in total, must be added
modulo 2n + 1, until two final summands are produced.
This can be performed by using either a CSA adder array
or a CSA adder tree (Dadda tree [20]). It is well-known,
that in integer multipliers a CSA tree results to irregular
architectures. However, in our case, the resulting array is
completely regular, that is, well-suited for VLSI implemen-
tations. This is because, the same number of bits exists in
every column and the carry outputs at the most significant
bit position of each stage, can be used inverted, as carry
inputs of the subsequent stage.

Suppose that the carry output of the n-th column of stage
i is denoted by ci. This signal has a weight of 2n. Since :

|ci2n|2n+1 = | − ci|2n+1 = |2n + ci|2n+1,

the carries out of the most significant bit position can be
complemented and added to the least significant bit position
of the next stage, forming an inverted EAC CSA tree. A
correction factor of 2n must be taken into account for each
such carry recirculation. During the addition of our n + 1
partial products, n−1 carries of weight 2n will be generated
and therefore the correction, COR2, that would be required
for the inverted EACs is :

COR2 = |2n(n − 1)|2n+1. (3)

The total correction required is consequently given by
the addition of the factors derived in (2) and (3) :

COR = COR1 + COR2 =
= |2n(2n − n − 1) + 2n(n − 1)|2n+1 =
= |2n(2n − 2)|2n+1 = 3.

Therefore, equation (1) takes the form :

R = |A × B|2n+1 =

∣∣∣∣∣
n−1∑
i=0

PPi + 3

∣∣∣∣∣
2n+1

. (4)

where the n partial products have been presented in Table 1.

2.3. Final stage addition

A straightforward implementation that one can easily de-
rive from (4), is to use COR as an extra partial product,
along with a fast modulo 2n + 1 adder (for example [8])
which accepts the two summands produced by the reduc-
tion scheme (array / tree) and produces the product. An
alternative, more efficient solution is however proposed in
the following, based on the use of an inverted EAC parallel
adder (equivalently, a diminished-1 modulo 2n + 1 adder).
If the architecture proposed in [7] is followed, this adder
can provide its result faster than the fastest modulo 2n + 1
adder available [8], with smaller area requirements. Since
however such an adder can provide only n bits of the result,
the remaining bit must be derived in a separate manner.

Given that, if two n-bit operands, suppose S and C,
with normal representation are used as inputs to a an in-
verted EAC parallel adder, its output will be equal to
|S + C + 1|2n+1, it becomes obvious that for using an in-
verted EAC parallel adder, part of the correction factor
should be assigned to the final adder, while the rest is treated
as a partial product. This leads to rewrite (4) as :

R = |A × B|2n+1 =

∣∣∣∣∣
n−1∑
i=0

PPi + 3

∣∣∣∣∣
2n+1

=

=

∣∣∣∣∣
∣∣∣∣∣
n−1∑
i=0

PPi + 2

∣∣∣∣∣
2n+1

+ 1

∣∣∣∣∣
2n+1

(5)

Let S = sn−1sn−2 . . . s0 and C = cn−2cn−3 . . . c0cn−1

denote the sum and carry n-bit vectors that are produced

by the multi-operand addition
∣∣∣∑n−1

i=0 PPi + 2
∣∣∣
2n+1

, that

is, S + C =
∣∣∣∑n−1

i=0 PPi + 2
∣∣∣
2n+1

. Substituting this in (5),

results into :

R = |A × B|2n+1 = |S + C + 1|2n+1. (6)

Since the most significant bit of the multiplication, is 1 only
when R = 2n, from (6) it is derived that R = 2n <=>
|S + C + 1|2n+1 = 2n. Taking into account that S and C
are n-bit vectors we get that R = 2n <=> S +C +1 = 2n

or equivalently that S + C = 2n − 1. That is, the most

Proceedings of the 9th EUROMICRO Conference on Digital System Design (DSD'06)
0-7695-2609-8/06 $20.00 © 2006

significant bit of the multiplication is 1 only when S and C
are complementary vectors. As explained at the end of this
subsection, this observation enables to compute the most
significant bit distinctly from the rest. In the following we
focus on the n least significant bits of R.

Let Rn denote the n-bit vector of the least significant bits
of R. Since :

Rn =
∣∣|A × B|2n+1

∣∣
2n =

∣∣|S + C + 1|2n+1

∣∣
2n

=

{
|S + C − 2n|2n , if S + C ≥ 2n

|S + C + 1|2n , otherwise

=

{
|S + C|2n , if S + C ≥ 2n∣∣|S + C|2n + 1

∣∣
2n , otherwise

the n least significant bits of the product can be handled by
an n-bit adder that increases the binary sum of its inputs
by one when the carry output is 0 and leaves it unchanged
in the case of a carry output. This is exactly the function
performed by an inverted EAC parallel adder. Therefore,
if a total correction factor of 2 is used as an extra partial
product, an inverted EAC final parallel adder will accept S
and C at its inputs and will provide Rn.

Very fast inverted EAC adders based on parallel prefix
carry computation units have appeared in [7, 15]. For in-
teger adders, a parallel prefix carry computation unit is de-
rived based on the following. Let A = an−1an−2 . . . a1a0

and B = bn−1bn−2 . . . b1b0 denote the two n-bit addition
operands and the let the terms gi = aibi, pi = ai + bi and
hi = ai ⊕ bi denote the carry generate, the carry propagate
and the half–sum terms at bit position i respectively. By
defining the ◦ operator as an operator that associates gener-
ate and propagate pairs and produces a new pair according
to the equation :

(gx, px) ◦ (gy, py) = (gx + pxgx, pxpy)

the computation of a carry ci of the integer addition of A
and B is equivalent to the problem of computing Gi, where :

(Gi, Pi) = (gi, pi) ◦ (gi−1, pi−1) ◦ · · · ◦ (g1, p1) ◦ (g0, p0).

Once the carries have been computed the sum bits, si, are
computed by si = hi ⊕ ci−1.

For attaining an inverted EAC adder, simple solutions,
such as the connection of the carry output of an integer
adder back to the carry input via an inverter, are not well-
suited, since they suffer from oscillations. In [15], it was
proposed that the output carry is driven back via an inverter
to a late carry increment stage composed of nodes imple-
menting a prefix operator. Therefore, no oscillations occur
and the derived inverted EAC adders feature an operating
speed close to the corresponding integer adders.

The need for an extra prefix stage that handles the re-
entering carry has been cancelled in the parallel-prefix in-
verted EAC adders proposed in [7]. This was achieved by
performing carry re-circulation at each existing prefix level.
As a result parallel-prefix adder architectures with log2 n
have been derived, that is, inverted EAC adders that can
achieve the same operating speed as the corresponding in-
teger adders. For the sake of completeness, some of the
theory developed in [7] is revisited in the following.

The inverted EAC adder carry, suppose c∗i , is equal to
G∗

i , where :
(G∗

i , P
∗
i) =

=

{
(Gn−1, Pn−1), if i = −1
(Gi, Pi) ◦ (Gn−1,i+1, Pn−1,i+1), otherwise,

(7)

and :

• (G,P) = (G,P)

• Ga,b and Pa,b, with a > b, are respectively the group
generate and propagate signals for the group a, a − 1,
a − 2, . . ., b + 1, b, computed by : (Ga,b, Pa,b) =
(ga, pa) ◦ (ga−1, pa−1) ◦ · · · ◦ (gb, pb).

In the cases that the equations indicated by (7) require
more than log2 n prefix levels for their implementation, they
are transformed them into equivalent ones by introducing
ti, ti = ai + bi, and taking into account that if (Gx, P x) =
(g, p)◦(G,P) and (Gy, P y) = ((t, g) ◦ (G,P)) then Gx =
Gy [7]. This enables to equivalently compute a carry whose
equation is given by a prefix equation of the form (g, p) ◦
(G,P) as ((t, g) ◦ (G,P)). For area-time efficient designs
this transformation should be applied j times recursively
to the equations of the form (gi, pi) ◦ (gi−1, pi−1) ◦ · · · ◦
(g1, p1) ◦ (Gn,i+1, Pn,i+1) produced by (7), until:

n − 1 − i + j =

{
n, if i > n

2 − 1
n
2 , if i ≤ n

2 − 1.

Since the inputs of the final adder are S and C and the
most significant bit of the result should be 1, only in the case
that S and C are complementary vectors, it is obvious that
this is equal to the group propagate signal out of the n bits
Pn−1 = pn−1pn−2 · · · p0, of the final inverted EAC adder.

2.4. An example of the proposed architec-
ture

Table 2 lists the required partial products in a modulo 17
multiplier that follows the proposed architecture. The last
partial product represents the total correction factor when
an inverted EAC adder is used as the final adder.

Proceedings of the 9th EUROMICRO Conference on Digital System Design (DSD'06)
0-7695-2609-8/06 $20.00 © 2006

Table 2. Partial Product Matrix in Modulo 17
Multiplication

23 22 21 20

PP0 = p3,0 + sq3 p2,0 + sq2 p1,0 + sq1 p0,0 + sq0 + p4,4

PP1 = p2,1 p1,1 p0,1 + s p3,1

PP2 = p1,2 p0,2 p3,2 p2,2

PP3 = p0,3 p3,3 p2,3 p1,3

PP4 = 0 0 1 0

HA HA FA+ HA

FA FA FA FA

FA FA FA FA

Inverted end-around carry parallel-prefix adder

r4 r3 r2 r1 r0

p0,3 p2,1 p1,1 p3,3 p3,2 p2,3 p3,1 p1,3

p1,2 p0,2 p0,1 + s p2,2

p3,0 + sq3 p2,0 + sq2 p1,0 + sq1 p4,4 + p0,0 + sq0

Figure 2. Proposed architecture of a modulo
17 multiplier.

b
3

a
3

a
2
b
2

a
1
b
1 a

0
b
0

r0r1
r2r3

r4

ai bi

hi (gi, pi) (ti, gi)

(G
i, j

, P
i, j

) (G
k , m

, P
k , m

)

(G
i,j
, P

i,j
) o (G

k,m
, P

k,m
)

((Gi,j, Pi,j) o (Gk,m, Pk,m))

ai bi

hi (gi, pi)

(G
i, j

, P
i, j

) (Gk , m, Pk , m)

(Gi,j, Pi,j) o (Gk,m, Pk,m)

ri =si = hi ci-1

hi ci-1

Figure 3. Final adder of the proposed modulo
17 multiplier.

Figure 2 presents a block diagram of the proposed mod-
ulo 17 multiplier. The simple gates required for the forma-
tion of the partial product bits are not shown. The blocks
used are half-adders (HA), full-adders (FA), simplified FA

blocks (FA+), that is, FAs with one of their inputs set at
1 and the final adder. The output carries at the most sig-
nificant bit of each stage are complemented and driven to
the least significant bit of the subsequent stage. The two fi-
nal derived summands are added in the final inverted EAC
adder.

It should be noted that the partial product bits of equal
weight should not be driven randomly in the FAs of the
corresponding column. For achieving the least delay, the
partial product bits derived earlier should be driven to the
FAs at the top of the CSA tree, whereas late arriving sig-
nals to FAs of subsequent tree levels. For example, the FAs
of the rightmost column in Figure 2, perform the addition
of 0, p3,1, p1,3, p2,2 and p4,4 + p1,0 + sq0 along with the
inverted carries that overflow at the leftmost column. The
addition of 0 can not be avoided since doing so alters the
number of inverted EACs in the CSA tree and invalidates
all the previous analysis. However, the FAs accepting the
bits from the constant partial product can be simplified to
HAs or FA+. Since it is expected that the signals p3,1, p1,3

and p2,2 would be the ones computed earlier, these along
with the 0 operand are those should be examined as candi-
dates for the first addition stage.

The final adder required in this case is shown in Fig. 3.
The parallel-prefix carry computation unit of the adder com-
putes the modulo 2n + 1 carries according to the following
expressions :

c∗−1 ←→ (g3, p3) ◦ (g2, p2) ◦ (g1, p1) ◦ (g0, p0)

c∗0 ←→ (t0, g0) ◦ (g3, p3) ◦ (g2, p2) ◦ (g1, p1)
c∗1 ←→ (g1, p1) ◦ (g0, p0) ◦ ((g3, p3) ◦ (g2, p2))

c∗2 ←→ (g2, p2) ◦ (g1, p1) ◦ ((t0, g0) ◦ (g3, p3))

From Fig. 2 it is evident that the proposed multipliers
have a very regular structure that is well suited for VLSI
implementation.

3. Area - delay analysis and comparisons

In this section, the area and time complexities of the pro-
posed multipliers are analyzed. The proposed multipliers
are compared qualitatively and quantitatively against the
multipliers proposed in [17]. For our qualitative compar-
isons, we use the unit-gate model proposed in [21]. This
model considers that all 2-input monotonic gates count as
one equivalent for both area and delay, whereas a 2-input
XOR/XNOR gate counts as two equivalents.

The area requirements of the proposed multipliers con-
sist of the gates forming the partial product bits, the CSA
tree and the final adder. Since n2 + 1 AND (NAND) gates
are needed for the formation of the pi,j (pi,j) bits, n NOR
gates for the qi bits, 1 XOR gate for s, n AND gates for

Proceedings of the 9th EUROMICRO Conference on Digital System Design (DSD'06)
0-7695-2609-8/06 $20.00 © 2006

Table 3. Area Comparisons
n 4 8 12 16 20 24 28 32

Aproposed 145 571 1,289 2,227 3,511 4,979 6,703 8,683
A[17] 170 628 1,356 2,348 3,603 5,120 6,896 8,932

Savings (%) 14.7 9.1 4.9 5.2 2.6 2.8 2.8 2.8

the sqi bits and finally n + 2 OR gates are needed for the
pi,j+sqi, pi,j+s and p0,0+pn,n+sq0 bits, the area required
for the partial product bits formation is modeled as :

Apartial = n2 +1+n+2+n+n+2 = n2 +3n+5 (8)

gate equivalents. The CSA tree that performs the reduction
of the partial products in two final summands is composed
of (n− 1) rows of n FAs each. However, since one of these
rows accepts the constant correction factor its n FAs can be
simplified to n − 1 HAs and one FA+. Considering that
an FA, an HA and an FA+ have an area of 7, 3 and 3 gate
equivalents respectively, we get that the area required for
the partial products reduction is :

ACSA = 7n(n − 2) + 3(n − 1) + 3 = 7n2 − 11n (9)

gate equivalents. The area of the last stage adder was com-
puted in [7] as

Aadder =
9
2
n log2 n +

1
2
n + 6 (10)

Summing the requirements of (8), (9) and (10) we get that
the proposed multipliers have an area of :

Aproposed = 8n2 +
9
2
n log2 n − 15

2
n + 11

whereas the area of the multipliers proposed in [17] was :

A[17] = 8n2 +
9
2
n log2 n +

1
2
n + 4

equivalent gates. We therefore conclude that the proposed
architecture leads to more compact designs. Table 3, lists
for various operand sizes the savings in area offered by the
proposed multipliers.

The delay of the proposed multipliers also consists of
three parts, namely, the delay of the partial product forma-
tion, the delay of the CSA tree and the delay of the paral-
lel inverted EAC adder. Since, the pi,j and (pi,j) terms are
computed in 1 time unit, the term pi,j +s in 3 time units and
the terms pi,j + sqi and p0,0 + pn,n + sq0 in 4 time units,
the upper bound of the delay for forming the partial product
matrix is 4 time units. However, as explained previously, in
some cases we can parallelize some of this delay with that
of the first stage of the CSA tree by driving the late arriving
partial product bits to the FAs of subsequent stages. Taking

Table 4. Delay Comparisons
n 4 8 12 16 20 24 28 32

Tproposed 19 29 35 36 42 42 46 46
T [17] 24 28 34 36 42 42 46 46

into account that the delay of a FA is 4 time units and that
when n+1 is a number of the Dadda sequence (6, 9, 13, 19,
28, 42, 63, . . .), for an optimal depth CSA tree, all partial
product bits are required in the first stage of the tree, we can
model the contribution of the partial product formation as :

Tpartial =

{
4, if n + 1 is a Dadda number,

1, otherwise
(11)

time units. The delay of a CSA tree designed according to
Dadda [20] can be modelled as:

TCSA = 4D(n + 1) (12)

where D(k) denotes the depth in FAs of a k-operand CSA
tree, available in table 5.1 of [22]. In the special case of
n = 4, since the first stage of the tree can be constructed
using only HA and FA+ blocks, we have that TCSA = 10.
The delay of the parallel-prefix inverted EAC adder is [7] :

Tadder = 2 log2 n + 3. (13)

Summing the delays of (11), (12) and (13), we conclude that
the delay of the proposed multipliers can be modeled as :

Tproposed =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

19, if n = 4,

4D(n + 1) + 2 log2 n + 7,
if n + 1 is

a Dadda number,

4D(n + 1) + 2 log2 n + 4, otherwise.

time units. The multipliers of [17] exhibit a delay of

T [17] =

⎧⎪⎨
⎪⎩

4D(n + 3) + 2 log2 n + 2,
if n + 1 or n + 2
is a Dadda number,

4D(n + 3) + 2 log2 n + 4, otherwise.

Table 4, lists for various operand sizes the delays offered
by the proposed architecture and the architecture of [17].
In most cases the two architectures offer similar execu-
tion delay. However, the proposed architecture operates

Proceedings of the 9th EUROMICRO Conference on Digital System Design (DSD'06)
0-7695-2609-8/06 $20.00 © 2006

Table 5. Area and delay results from cell-
based implementations

Multipliers of [17] Proposed Multipliers
n Area Delay) Area Delay
4 3724 1.34 3031 1.12
8 9685 1.98 8721 1.98
16 36541 2.65 34287 2.62
32 118552 3.63 113912 3.60

on operands with normal representation and does not there-
fore require any input / output converters as the architecture
of [17] does, which increase further its delay.

Since the unit-gate model does not take into account the
interconnect complexity, as well as, fan-in and fan-out re-
quirements of the compared designs, a cell-based design
approach was used to verify the qualitative comparisons.
Each multiplier was described in structural HDL using cells
from a 0.18μm CMOS standard cell library. After an initial
mapping, the synthesis tool performed iterative steps of de-
lay optimization on each design until no faster netlist could
be reached. Recursive area recovery steps were then ap-
plied. The netlists and the associated constraints were then
passed to a standard cell place and route tool. All design
constraints such as output load, max fan-out and floorplan
initialization were kept constant during each comparison.
After the netlists were annotated with the back-end infor-
mation, static timing analysis was performed. The attained
results are listed in Table 5. The reported area results in-
clude both cell and interconnect area and are given in μm2.
The delay results are in nanoseconds. On the average of
the examined cases, the proposed architecture leads to 9.7%
more compact and in parallel 4.6% faster multipliers.

4. Conclusions

A novel architecture for a modulo 2n + 1 multiplier was
proposed in this paper. The proposed architecture improves
heavily the one proposed in [12] by combining all correc-
tions into a single one, thereby decreasing the required par-
allel additions from 3 to 1. Even higher speed is attained by
treating part of the required correction as a partial product
while the rest is handled by the last stage adder.

Our comparisons against the most efficient known mul-
tipliers indicate that the proposed multipliers offer the same
or even higher speed while being more compact. Since the
proposed multipliers accept operands in normal form, they
do not require time- and hardware-consuming input / output
translators and special handling of zero operands as the ear-
lier solution which accepts diminished-1 operands. There-
fore, the proposed multipliers can be used more efficiently.

References

[1] L. M. Leibowitz. A Simplified Binary Arithmetic for the
Fermat Number Transform. IEEE Trans. Acoust., Speech,
Signal Processing, 24:356–359, 1976.

[2] M. Benaissa et al. Diminished-1 Multiplier for a Fast Con-
volver and Correlator using the Fermat Number Transform.
IEE Proceedings G, 135:187–193, 1988.

[3] S. Sunder et al. Area-efficient Diminished-1 Multiplier for
Fermat Number-theoretic Transform. IEE Proceedings G,
140:211–215, 1993.

[4] R. Zimmermann et al. A 177 Mb/s VLSI Implementation of
the International Data Encryption Algorithm. IEEE J. Solid-
State Circuits, 29(3):303–307, 1994.

[5] E. D. Claudio et al. Fast Combinatorial RNS Processors
for DSP Applications. IEEE Trans. Comput., 44:624–633,
1995.

[6] J. Ramirez et al. High Performance, Reduced Complexity
Programmable RNS–FPL Merged FIR Filters. Electronics
Letters, 38(4):199–200, 2002.

[7] H. T. Vergos et al. Diminished-One Modulo 2n + 1 Adder
Design. IEEE Trans. Comput., 51:1389–1399, 2002.

[8] C. Efstathiou et al. Fast Parallel-Prefix Modulo 2n + 1
Adders. IEEE Trans. Comput., 53:1211–1216, 2004.

[9] S. J. Piestrak. Design of Residue Generators and Multi-
operand Modular Adders using Carry-Save Adders. IEEE
Trans. Comput., 43:68–77, 1994.

[10] H. T. Vergos and C. Efstathiou. Diminished-1 Modulo 2n+1
Squarer Design. IEE Proceedings - Computers and Digital
Techniques, 152:561–566, 2005.

[11] A. A. Hiasat. A Memoryless mod(2n ± 1) Residue Multi-
plier. Electronics Letters, 28(3):314–315, 1992.

[12] A. Wrzyszcz and D. Milford. A New Modulo 2a + 1 Multi-
plier. In Proc. of the International Conference on Computer
Design (ICCD’93), pages 614–617, 1993.

[13] Z. Wang et al. An Efficient Tree Architecture for Modulo
2n + 1 Multiplication. Journal of VLSI Signal Processing,
14:241–248, 1996.

[14] Y. Ma. A Simplified Architecture for Modulo (2n +1) Mul-
tiplication. IEEE Trans. Comput., 47(3):333–337, 1998.

[15] R. Zimmerman. Efficient VLSI Implementation of Modulo
(2n ± 1) Addition and Multiplication. In Proc. of the 14th

IEEE Symposium on Computer Arithmetic, pages 158–167,
April 1999.

[16] A. Curiger. VLSI Architectures for Computations in Finite
Rings and Fields. PhD thesis, Swiss Federal Institute of
Technology, 1993.

[17] C. Efstathiou et al. Efficient Diminished-1 Modulo 2n + 1
Multipliers. IEEE Trans. Comput., 54:491–496, 2005.

[18] L. Sousa and R. Chaves. A Universal Architecture for De-
signing Efficient Modulo 2n + 1 Multipliers. IEEE Trans.
Circuits Syst. I, 52:1166–1178, 2005.

[19] R. Chaves and L. Sousa. Faster Modulo 2n + 1 Multipliers
without Booth Recoding. In Proc. of the XX Conference on
Design of Circuits and Integrated Systems (DCIS ’05), 2005.

[20] L. Dadda. On Parallel Digital Multipliers. Alta Frequenza,
45:574–580, 1976.

[21] A. Tyagi. A Reduced-Area Scheme for Carry-Select Adders.
IEEE Trans. Comput., 42(10):1163–1170, 1993.

[22] I. Koren. Computer Arithmetic Algorithms, 2nd edition. A.
K. Peters, Natick, 2002.

Proceedings of the 9th EUROMICRO Conference on Digital System Design (DSD'06)
0-7695-2609-8/06 $20.00 © 2006

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

