
Diminished-1 Modulo 2n + 1 Squarer Design

H. T. Vergos
Computer Engineering & Informatics Dept.,

University of Patras, 26 500, Greece &
Computer Technology Institute,

3 Kolokotroni Str., 26 221 Patras, Greece.
E-mail : vergos@ceid.upatras.gr

C. Efstathiou
Informatics Department,

TEI of Athens,
12 210, Athens, Greece.
E-mail : cefsta@teiath.gr

Abstract

Squarers modulo M are useful design blocks for digi-
tal signal processors that internally use a residue number
system and for implementing the exponentiators required in
cryptographic algorithms. In these applications, some of the
most commonly used moduli are those of the form 2n + 1.
To avoid using (n+1)-bit circuits, the diminished-1 number
system can be effectively used in modulo 2n + 1 arithmetic
applications. In this paper, for the first time in the open lit-
erature, we formally derive modulo 2n + 1 squarers that
adopt the diminished-1 number system. The resulting im-
plementations are built using only full- or half-adders and
a final diminished-1 adder and can therefore be pipelined
straightforwardly.

1. Introduction

A non-positional residue number system (RNS) is de-
fined by a set of L moduli, suppose {d1, d2, . . . , dL}, that
are pair-wise relative prime. Assuming that |A|M , denotes
the modulo M of A, that is, the least non-negative remain-
der of the division of A by M , an integer A has a unique rep-
resentation in the RNS, given by the set {a1, a2, . . . , aL} of
residues, where ai = |A|di

, if A ≥ 0 and ai = |D + A|di
,

if A < 0, with D = d1 × d2 × . . . × dL. A RNS opera-
tion �, is defined as (z1, z2, . . . , zL) = (a1, a2, . . . , aL) �
(b1, b2, . . . , bL), where zi = |ai � bi|di

. Since the compu-
tation of zi only depends on ai, bi and di, each zi is com-
puted in parallel in a separate arithmetic unit, often called
channel. Note that each channel deals with small residues
instead of wide numbers and since all channels operate in
parallel significant speedup over the binary system may be
achieved.

The adoption of a RNS is therefore a good choice for ap-
plications whose arithmetic operations are limited to addi-
tion, subtraction, multiplication and squaring [18, 17]. Sev-

eral digital signal processors (DSPs) targeting applications
such as filtering [10, 16, 14] or modulation for communica-
tion components [9, 15] have already been built adopting a
RNS and many more are expected, provided that modulo di

arithmetic components are available and efficient.
Efficient adders [8, 3, 2, 5], multipliers [7, 23] and squar-

ers [13] have been presented for moduli of the 2n − 1 and
2n + 1 forms. Therefore, RNSs based on the set {2n, 2n −
1, 2n + 1} have received significant attention and are the
most commonly used. For this set of moduli however, a
new problem, namely the problem that the 2n + 1 chan-
nel has to deal with operands one bit wider than the other
two, arises. To overcome this problem, and given that in the
case of a zero operand the result can be derived straightfor-
wardly, Leibowitz [11] introduced the diminished-1 repre-
sentation.

In the diminished-1 representation each number is repre-
sented decreased by 1 modulo 2n + 1 and all arithmetic op-
erations are inhibited for a zero operand (easily identified by
the most significant bit being at 1 in its diminished-1 form).
This representation has the great advantage that the num-
bers are represented by n bits. Its only disadvantage is that
converters from / to the diminished-1 to / from weighted
are required. However, since a RNS is used when a series of
additions and multiplications take place, the conversions re-
quired are only a very small portion of the total computation
time.

Although very efficient adders [24, 6, 20] and multipli-
ers [22, 12, 4] have appeared when the diminished-1 num-
ber system is used for the modulo 2n + 1 channel, an effi-
cient squarer circuit has not yet been presented. Although a
modulo 2n + 1 multiplier can be also used for squaring, as
we will show in this paper, a dedicated squarer may be im-
plemented more efficiently.

Modulo 2n + 1 squarers also find great applicability in
some cryptographic algorithms. In these algorithms the en-
cryption and decryption processes, involve modular expo-
nentations of the form D =

∣∣AE
∣∣
2n+1

, which may be im-

Proceedings of the EUROMICRO Systems on Digital System Design (DSD’04)
0-7695-2203-3/04 $ 20.00 IEEE

plemented using square and multiply algorithms. In several
cases the operands used, that is A,D and 2n + 1 are very
wide, in the order of thousands of bits. The adoption of a
RNS can also help in this case to speedup the computations.
As an example, the square and multiply algorithm was used
in [25] for implementing the modulo 216 + 1 exponentia-
tor circuit required in the International Data Encryption Al-
gorithm. Instead of a squarer, multipliers modulo 216 + 1
have been used, along with a n-bit representation in which
all operands are represented in weighted form except the
operand 2n which is represented as an all 0s operand.

In this paper, we formally derive novel squarers mod-
ulo M , where M is of the form 2n + 1, when the operands
adopt the diminished-1 representation. The derived squar-
ers can be implemented by using only a carry save array
(CSA) composed of full (FA) and half (HA) adders and a fi-
nal modulo 2n + 1 diminished-1 parallel adder [24, 6, 20].
The resulting implementations, can perform squaring much
faster than a diminished-1 multiplier and can be very eas-
ily pipelined up to the FA stage.

The rest of the paper is organized as follows. The deriva-
tion of the new squarers is given in Section II. An exam-
ple of the proposed implementation is presented in Section
III. The area and delay requirements of the proposed squar-
ers are analyzed in Section IV. They indicate that the pro-
posed squarers offer significant delay savings over a multi-
plier circuit designed according to [4]. Our conclusions are
drawn in the last section.

2. Novel Squarers

In this section, we introduce a new architecture for mod-
ulo 2n + 1 squarers of diminished-1 operands. We first ex-
plain the derivation of the partial products. We then consider
the reduction of the partial products in two summands.

Let A be a (n + 1)-bit number, A ∈ [0, 2n + 1) and let
A−1 = an−1an−2 . . . a1a0 denote its diminished-1 repre-
sentation. Assume that Q denotes the square of A modulo
2n + 1, that is, Q = |A2|2n+1. We then have :

Q−1 + 1 =
∣∣∣(A−1 + 1)2

∣∣∣
2n+1

=
∣∣∣A2

−1 + 2 × A−1 + 1
∣∣∣
2n+1

or equivalently,

Q−1 =
∣∣∣A2

−1 + 2 × A−1

∣∣∣
2n+1

=
∣∣∣ ∣∣A2

−1

∣∣
2n+1

+ |2 × A−1|2n+1

∣∣∣
2n+1

. (1)

The term |A2
−1|2n+1 of (1) can be expressed as

∣∣A2
−1

∣∣
2n+1

=

∣∣∣∣∣∣
n−1∑
i=0

n−1∑
j=0

aiaj2i+j

∣∣∣∣∣∣
2n+1

=

∣∣∣∣∣∣
n−1∑
i=0

n−1∑
j=0

aiaj

∣∣2i+j
∣∣
2n+1

∣∣∣∣∣∣
2n+1

. (2)

Taking into account that i + j ≤ 2n − 2, (2) can be written
as

∣∣A2
−1

∣∣
2n+1

=

∣∣∣∣∣∣
n−1∑
i=0

n−1∑
j=0

aiaj(−1)s2|i+j|n

∣∣∣∣∣∣
2n+1

,

where

s =

{
0, if i + j < n

1, if i + j ≥ n.
(3)

Since for z ∈ {0, 1} it holds that∣∣ − z
∣∣
2n+1

=
∣∣2n + 1 − z

∣∣
2n+1

=
∣∣2n + z

∣∣
2n+1

, (4)

then (3) can be expressed as

∣∣A2
−1

∣∣
2n+1

=

∣∣∣∣∣∣
n−1∑
i=0

n−1∑
j=0

xi,j2|i+j|n

∣∣∣∣∣∣
2n+1

,

where

xi,j =

{
aiaj , if i + j < n∣∣2n + aiaj

∣∣
2n+1

, if i + j ≥ n
(5)

and t denotes the complement of bit t.
Equation (5) indicates that one way to form the partial

products, is to complement each bit aiaj with i + j ≥ n,
and place it at bit position |i + j|n, provided that a correc-
tion equal to

∣∣2n2|i+j|n
∣∣
2n+1

is taken into account. There-
fore, (5) can be reformulated as

∣∣A2
−1

∣∣
2n+1

=

∣∣∣∣∣
n−1∑
i=0

(PPi + Ci)

∣∣∣∣∣
2n+1

(6)

where PPi denotes the i-th partial product

PPi =
n−1−i∑

j=0

aiaj 2|i+j|n +
n−1∑

j=n−i

aiaj 2|i+j|n , (7)

and Ci is the corresponding correction factor. Note that PP0

does not contain any complemented bits and thus C0 = 0.
On the other hand, for i �= 0, the value of Ci depends on the
number of the complemented bits aiaj , and is given by

Ci =
n−1∑

j=n−i

∣∣2n 2|i+j|n∣∣
2n+1

= 2n (2i − 1). (8)

Proceedings of the EUROMICRO Systems on Digital System Design (DSD’04)
0-7695-2203-3/04 $ 20.00 IEEE

2n−1 2n−2 . . . 21 20

PP0 = a0an−1 a0an−2 . . . a0a1 a0, C0 = 0
PP1 = a1an−2 a1an−3 . . . a1a0 a1an−1, C1 = 2n (21 − 1)
PP2 = a2an−3 a2an−4 . . . a2an−1 a2an−2, C2 = 2n (22 − 1)

. . .
PPn−2 = an−2a1 an−2a0 . . . an−2a3 an−2a2, Cn−2 = 2n (2n−2 − 1)
PPn−1 = an−1a0 an−1 . . . an−1a2 an−1a1, Cn−1 = 2n (2n−1 − 1).

Table 1. Partial products and correction factors

According to the above, and taking into account that
aiai = ai the partial products and correction factors pre-
sented in Table 1 are derived for the term |A2

−1|2n+1 of (1).
The total correction, CP , required for the formation of the
above n partial products is equal to

CP =
n−1∑
i=0

Ci = C0 +
n−1∑
i=1

2n (2i − 1) = 2n(2n − 1 − n).

(9)
We can now notice by observing the columns of the

partial products, that in the same column some terms ap-
pear twice, once as aiaj and once as ajaj , or once as aiaj

and once as ajai. Since aiaj = ajai (aiaj = ajai) and
aiaj + aiaj = 2 × aiaj (aiaj + ajai = 2 × aiaj) each
such pair of product bits that appears in the column with
bits of weight 2i+j can be replaced by one product bit aiaj

(aiaj) in the column with bits of weight 2i+j+1, that is, in
the next to the left column. The pairs of the leftmost column,
can also, as explained earlier, according to (5) be comple-
mented and placed at the rightmost column, if a correction
factor equal to 2n is taken into account for each such com-
plementation and placement.

The number of pairs of equal product bits that appear in
the leftmost column is �n

2 �, where �x� denotes the greater
integer which is less or equal to x. The total correction re-
quired by the simplification of the same terms is therefore
equal to :

CS = 2n�n

2
�. (10)

The resulting partial products matrix have differ-
ent forms, depending on whether n is odd or even. In the
case that n is odd, each column of the newly formed ma-
trix has exactly n+1

2 bits. When n is even on the
other hand, the columns with bits of weight 2i+j , with
i + j ∈ {0, 2, 4, . . . , n − 2} have 2 + n

2 bits, whereas the
rest columns have n

2 − 1 bits.
Since we have derived the required partial products for

the term
∣∣A2

−1

∣∣
2n+1

, of (1), we now turn our focus to the
term |2 × A−1|2n+1. This term leads to a new partial prod-
uct equal to A−1 shifted one position to the left. According
to (5) the an−1 bit that overflows at the left end, can be com-
plemented and placed at bit position 0, provided that a cor-
rection factor, CN , equal to 2n is taken into account. There-

fore the (n + 1)-th partial product of the proposed squarers
is given by :

2n−1 2n−2 . . . 22 21 20

PPn = an−2 an−1 . . . a1 a0 an, CN = 2n

The proposed squarers utilize one last partial product,
that is, the diminished-1 modulo 2n + 1 representation of
the sum of all correction factors required. These correction
factors are CP , CS , CN , but we must also take into account
any correction factor introduced during the reduction of the
partial products into two summands. In the following we ex-
plain how the latter correction factor can be computed.

We consider that the reduction of the partial products
into two summands is performed by using a full adder (FA)
based tree architecture. Tree architectures have been intro-
duced by Wallace [21]. Dadda reduced their area require-
ments in [1]. Consider that cn is the carry output at the
most significant bit position of some stage i in the reduc-
tion scheme. cn has a weight of 2n. Since∣∣cn2n

∣∣
2n+1

=
∣∣ − cn

∣∣
2n+1

=
∣∣2n + cn

∣∣
2n+1

, (11)

cn can be complemented and added at the least significant
bit position of the next stage, provided that a correction of
2n is taken into account. For computing the total correction
factor required, we consider the following two cases :

• n is odd.
Then, during the reduction of the n+1

2 + 2 par-
tial products, n+1

2 carries are produced. The correc-
tion required for the reduction scheme is then equal to
CR,odd = 2n n+1

2 .
Let C denote the modulo 2n + 1 sum of all cor-

rection factors, that is, the modulo 2n + 1 sum of
CP , CS , CN and CR,odd. Note that in parallel, C, is
our last partial product. We then have :∣∣∣C∣∣∣

2n+1
=

∣∣∣CP + CS + CN + CR,odd

∣∣∣
2n+1

=

=
∣∣∣2n(2n − n − 1) + 2n n − 1

2
+ 2n

+ 2n n + 1
2

∣∣∣
2n+1

= 1. (12)

Proceedings of the EUROMICRO Systems on Digital System Design (DSD’04)
0-7695-2203-3/04 $ 20.00 IEEE

212 211 210 29 28 27 26 25 24 23 22 21 20

a0a6 a0a5 a0a4 a0a3 a0a2 a0a1 a0

a1a6 a1a5 a1a4 a1a3 a1a2 a1 a1a0

a2a6 a2a5 a2a4 a2a3 a2 a2a1 a2a0

a3a6 a3a5 a3a4 a3 a3a2 a3a1 a3a0

a4a6 a4a5 a4 a4a3 a4a2 a4a1 a4a0

a5a6 a5 a5a4 a5a3 a5a2 a5a1 a5a0

a6 a6a5 a6a4 a6a3 a6a2 a6a1 a6a0

.

Table 2. Initial partial product matrix

• n is even.
As analyzed above, in this case all columns of the

partial products matrix do not have the same number
of partial product bits. We apply a FA at each column
with bits of weight 2i+j , with i+j ∈ {0, 2, 4, .., n−2},
thereby reducing the number of partial product bits
from n

2 +4 to n
2 +2. In parallel, the carries that are pro-

duced from these FAs, increase the number of partial
product bits at each of the rest columns from n

2 + 1 to
n
2 + 2. As a result, we get a completely rectangular ar-
ray, in which every column has n

2 + 2 partial product
bits.

During their reduction into two summands n
2 car-

ries are produced. Therefore, the correction required
for the reduction scheme is equal to CR,even = 2n n

2 .
For the total correction, in this case we also get :∣∣∣C∣∣∣

2n+1
=

∣∣∣CP + CS + CN + CR,even

∣∣∣
2n+1

=

=
∣∣∣2n(2n − n − 1) + 2n n

2
+ 2n + 2n n

2

∣∣∣
2n+1

= 1.

(13)

Since C is treated in the proposed architecture as an ex-
tra partial product, we have to use in our reduction scheme
its diminished-1 representation, i.e., C−1, which is equal to
the all 0s n-bit vector. Note that although C−1 = 0, it can-
not be ignored during the reduction of the partial products,
since in this case less than the computed carries of weight
2n will be produced.

An implementation of the proposed architecture is there-
fore composed of AND or NAND gates that form a bit of
each partial product, a Dadda tree that reduces the partial
products into two summands, and a modulo 2n + 1 adder
for diminished-1 operands [20] that accepts these two sum-
mands and produces the required product.

3. An example of the proposed squarers

In this section we present an example of the derived
diminished-1 modulo 2n + 1 squarers. Consider the design
of a modulo 27 + 1 squarer. Let A−1 = a6a5a4a3a2a1a0

be the input operand. We start off by the partial product ma-
trix for the A2

−1 shown in Table 2.
We then complement each bit aiaj with i + j ≥ 7, and

place it at bit position |i + j|7. This results into the follow-
ing partial product matrix :

26 25 24 23 22 21 20

PP0 = a0a6 a0a5 a0a4 a0a3 a0a2 a0a1 a0

PP1 = a1a5 a1a4 a1a3 a1a2 a1 a1a0 a1a6

PP2 = a2a4 a2a3 a2 a2a1 a2a0 a2a6 a2a5

PP3 = a3 a3a2 a3a1 a3a0 a3a6 a3a5 a3a4

PP4 = a4a2 a4a1 a4a0 a4a6 a4a5 a4 a4a3

PP5 = a5a1 a5a0 a5a6 a5 a5a4 a5a3 a5a2

PP6 = a6a0 a6 a6a5 a6a4 a6a3 a6a2 a6a1

Identifying, pairs of equal terms in every column and
substituting them with one term to the next to the left col-
umn, enables us to reduce the set of partial products into
the following (note that again the pairs of the leftmost col-
umn are replaced by their complement term in the rightmost
column) :

26 25 24 23 22 21 20

PP0 = a5a0 a6a5 a6a4 a6a3 a6a2 a6a1 a6a0

PP1 = a4a1 a4a0 a3a0 a5a4 a5a3 a5a2 a5a1

PP2 = a3a2 a3a1 a2a1 a2a0 a1a0 a4a3 a4a2

PP3 = a3 a6 a2 a5 a1 a4 a0

Apart from the four above partial products, the complete
matrix of the squarer must also include |2 × A−1|2n+1 and
the total correction C, that is, the following two partial prod-
ucts :

26 25 24 23 22 21 20

PP4 = a5 a4 a3 a2 a1 a0 a6

PP5 = 0 0 0 0 0 0 0

These partial products can be reduced into two sum-
mands, by the tree architecture indicated in Fig. 1, which is
composed only by FA and HA blocks. Each such block pro-
duces a carry at its left and a sum at its right output. The
carries produced at the most significant bit position (left-
most carries) are complemented and added to the bits of the

Proceedings of the EUROMICRO Systems on Digital System Design (DSD’04)
0-7695-2203-3/04 $ 20.00 IEEE

FA HA FA HA FA HA FA HA FA FA HA

a5a0

a4a1
a3a2 a3

a5 a6a5

a4a0
a3a1 a6

a4 a6a4

a3a0
a2a1 a2

a3 a6a3

a5a4
a2a0 a5

a2 a6a2

a5a3
a1a0 a1 a6a1

a5a2
a4a3 a4

a0

FA HA

a6a0

a5a1
a4a2 a6

a0

FA

FA FA FA FA FAFA

FA FA FA FA FA FA

Diminished-1 Modulo 27+1 Parallel Adder

q6 q5 q4 q3 q2 q1 q0

HA

Figure 1. Proposed diminished-1 modulo 27 + 1 squarer

least significant bit position. Note that in Fig. 1, 4 such car-
ries are produced, in order to comply with the analysis pre-
ceding (12).

The two final summands are driven to a final parallel
diminished-1 adder. It is obvious that the proposed squarer
architecture is very regular and can be straightforwardly
pipelined up to the FA stage, since the final adder if de-
signed according to [20], can be pipelined up to the com-
plex gate level.

4. Comparisons

In this section we examine the area and delay complex-
ities of the proposed squarers. We further compare their
delay against that of the multipliers proposed in [4]. The
reasoning behind this comparison is that a squarer circuit
would be finally included in a RNS implementation only if
performing the squaring function by a multiplier would sig-
nificantly slow down the execution rate.

For our comparisons, we adopt the approximations of the
unit-gate model [19], that is, we consider that all 2-input
monotonic gates count as one gate equivalent for both area
and delay, while a 2-input XOR or XNOR gate counts as 2
gate equivalents for both area and delay.

In the proposed squarers, the required partial product bits
can be derived in parallel by the use of n(n−1)

2 AND or
NAND gates and �n

2 � inverters. We consider that these par-
tial products are then reduced to two summands by the use
of a Dadda tree. The depth in FA stages of a Dadda tree is
a function, suppose D(k), of its number of operands and is
listed in Table 3 for all practical values.

Each of the n columns of the tree, is composed of at
most �n+1

2 � FAs. (At most means that in several cases, fur-

k D(k) in FA stages

4 2
5 ≤ k ≤ 6 3
7 ≤ k ≤ 9 4

10 ≤ k ≤ 13 5
14 ≤ k ≤ 19 6
20 ≤ k ≤ 28 7
29 ≤ k ≤ 42 8
43 ≤ k ≤ 63 9
63 ≤ k ≤ 94 10

Table 3. FA stages in a k operand Dadda Tree

ther simplifications are possible. For example, in the first
row of the squarer in Fig. 1, a1, should be driven in both in-
puts of a HA at the column with bits of weight 22. This HA
has been removed from Fig. 1, by substituting its sum out-
put with 0 and its carry output with a1. The first substitu-
tion also leads to the simplification of a FA of the second
row into a HA. These simplifications depend on the actual
value of n and therefore are not modelled in the sequel).
The area and delay of a FA is 7 equivalent gates and 4 time
units respectively.

The area and delay of a n-bit parallel diminished-1 mod-
ulo 2n + 1 adder that follows the architecture proposed in
[20] is 9

2n log2 n+ 1
2n+6 equivalent gates and 2 log2 n+3

time units. Therefore the area and delay requirements of the
proposed modulo 2n + 1 squarers are :

n(n − 1)
2

+
n

2
+ 7n

⌊
n + 1

2

⌋
+

9
2
n log2 n

+
1
2
n + 6 equivalent gates and

1 + 4D

⌊
n + 1

2

⌋
+ 2 log2 n + 3 time units

Proceedings of the EUROMICRO Systems on Digital System Design (DSD’04)
0-7695-2203-3/04 $ 20.00 IEEE

Multipliers Proposed
n of [4] Squarers Savings(%)

4 24 8 66.6
8 28 18 35.7

12 34 24 29.4
16 36 28 22.2
20 42 34 19.0
24 42 34 19.0
28 46 38 17.4
32 46 38 17.4

Table 4. Delay in equivalent gates

respectively.
The modulo 2n + 1 multipliers presented in [4], were

compared against those presented in [22] and [12] and were
found more efficient in both area and delay terms. Their de-
lay using the unit-gate model is{

4D(n + 3) + 2 log2 n + 2, if n = 4, 5, 7, 8, 11, 12, . . .

4D(n + 3) + 2 log2 n + 4, otherwise.
(14)

In Table 4 the delay of the multipliers presented in [4] and
the proposed squarers are presented for several values of
n, along with the savings offered by the proposed squar-
ers. The proposed squarers are capable of offering savings
in the delay of the squaring function up to 66.6% compared
to when a multiplier circuit is used for it. The delay sav-
ings are well above 20% in the most interesting cases, from
a practical point of view, that is, when n ≤ 16. On the av-
erage of the examined cases, a dedicated squarer designed
according to the proposed architecture offers 28.4% shorter
delay.

5. Conclusions

Efficient modulo 2n + 1 squarers are useful design com-
ponents in RNS and cryptography applications. In this
paper we have derived a new architecture for design-
ing diminished-1 modulo 2n + 1 squarers.

The proposed squarers offer significant savings in prop-
agation delay over the case that a modulo 2n + 1 multiplier
is used for performing the squaring function. The proposed
architecture results in implementations with very regular
structure well suited to VLSI implementations and straight-
forward to pipeline.

References

[1] L. Dadda. Some schemes for parallel multipliers. Alta Fre-
quenza, 34:349–356, 1965.

[2] G. Dimitrakopoulos, H. T. Vergos, D. Nikolos, and C. Efs-
tathiou. A family of parallel-prefix modulo 2n−1 adders. In

Proc. of the IEEE International Conference on Application-
Specific Systems, Architectures and Processors, pages 326–
336, 2003.

[3] G. Dimitrakopoulos, H. T. Vergos, D. Nikolos, and C. Efs-
tathiou. A systematic methodology for designing area-time
efficient parallel-prefix modulo 2n − 1 adders. In Proc. of
the IEEE International Symposium on Circuits and Systems,
pages 225–228, 2003.

[4] C. Efstathiou, H. T. Vergos, G. Dimitrakopoulos, and
D. Nikolos. Efficient modulo 2n + 1 tree multipliers for
diminished-1 operands. In Proc. of the 10th IEEE Int. Con-
ference on Electronics, Circuits and Systems, pages 200–203,
2003.

[5] C. Efstathiou, H. T. Vergos, and D. Nikolos. Fast parallel-
prefix modulo 2n + 1 adders. In Proc. of the XVII Con-
ference on Design of Circuits and Integrated Systems, pages
65–70, 2002.

[6] C. Efstathiou, H. T. Vergos, and D. Nikolos. Modulo 2n ± 1
adder design using select-prefix blocks. IEEE Trans. Com-
put., 52:1399–1406, 2003.

[7] C. Efstathiou, H. T. Vergos, and D. Nikolos. Modified Booth
modulo 2n − 1 multipliers. IEEE Trans. Comput., 53:370–
374, 2004.

[8] L. Kalampoukas, D. Nikolos, C. Efstathiou, H. T. Vergos,
and J. Kalamatianos. High-speed parallel-prefix modulo
2n − 1 adders. IEEE Trans. Comput., 49(7):673–680, 2000.

[9] T. Keller, T. H. Liew, and L. Hanzo. Adaptive redundant
residue number system coded multicarrier modulation. IEEE
J. Select. Areas Commun., C-18(11):2292–2301, 2000.

[10] T. Kwan and T. Martin. Adaptive detection and enhancement
of multiple sinusoids using a cascade IIR filter. IEEE Trans.
Circuits Syst., 36:937–945, 1989.

[11] L. M. Leibowitz. A simplified binary arithmetic for the Fer-
mat number transform. IEEE Trans. Acoust., Speech, Signal
Processing, 24:356–359, 1976.

[12] Y. Ma. A simplified architecture for modulo (2n + 1) multi-
plication. IEEE Trans. Comput., 47(3):333–337, 1998.

[13] S. Piestrak. Design of squarers modulo A with low-level
pipelining. IEEE Trans. Comput., 49:31–41, 2002.

[14] J. Ramirez, A. Garcia, S. Lopez-Buedo, and A. Lloris. RNS-
enabled digital signal processor design. Electronics Letters,
38(6):266–268, 2002.

[15] J. Ramirez, A. Garcia, U. Meyers-Baese, and A. Lloris. Fast
RNS FPL-based communications receiver design and imple-
mentation. In Proc. of the 12th International Conference on
Field Programmable Logic, Lecture Notes in Computer Sci-
ence Vol. 2438, Springer-Verlag, pages 472–481, 2002.

[16] J. Ramirez and U. Meyer-Baese. High performance, re-
duced complexity programmable RNS–FPL merged FIR fil-
ters. Electronics Letters, 38(4):199–200, 2002.

[17] M. A. Soderstrand et al. Residue Number System Arithmetic:
Modern Applications in Digital Signal Processing. IEEE
Press, 1986.

[18] N. Szabo and R. Tanaka. Residue Arithmetic and its Aplica-
tions to Computer Technology. McGraw-Hill, 1967.

[19] A. Tyagi. A Reduced-Area Scheme for Carry-Select Adders.
IEEE Trans. Comput., 42(10):1163–1170, 1993.

Proceedings of the EUROMICRO Systems on Digital System Design (DSD’04)
0-7695-2203-3/04 $ 20.00 IEEE

[20] H. T. Vergos, C. Efstathiou, and D. Nikolos. Diminished-
one modulo 2n + 1 adder design. IEEE Trans. Comput.,
51:1389–1399, 2002.

[21] C. S. Wallace. A suggestion for a fast multiplier. IEEE Trans.
Electron. Comput., EC-13:14–17, 1964.

[22] Z. Wang, G. A. Jullien, and W. C. Miller. An efficient tree ar-
chitecture for modulo 2n +1 multiplication. Journal of VLSI
Signal Processing, 14:241–248, 1996.

[23] A. Wrzyszcz and D. Milford. A new modulo 2a + 1 multi-
plier. In Proc. of the International Conference on Computer
Design, pages 614–617, 1993.

[24] R. Zimmermann. Binary Adder Architectures for Cell-Based
VLSI and their Synthesis. PhD thesis, Swiss Federal Institute
of Technology, 1997.

[25] R. Zimmermann et al. A 177 Mb/s VLSI Implementation of
the International Data Encryption Algorithm. IEEE J. Solid-
State Circuits, 29(3):303–307, 1994.

Proceedings of the EUROMICRO Systems on Digital System Design (DSD’04)
0-7695-2203-3/04 $ 20.00 IEEE

	footer1:

