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Abstract

In this paper we at first reveal the cyclic nature of idempotency in the case of modulo 2n − 1
addition. Then based on this property, we derive for each n, a family of minimum logic depth
modulo 2n − 1 adders, which allows several trade-offs between the number of operators, the
internal wire length, and the fanout of internal nodes. Performance data, gathered using static
CMOS implementations, reveal that the proposed architectures outperform all previously reported
ones in terms of area and/or operation speed.

1 Introduction

Modulo 2n − 1, or equivalently one’s complement addition, plays an essential role in Residue
Number System (RNS) applications [1], in fault-tolerant computer systems [2], in error detection
in computer networks [3], and in floating-point arithmetic [4], [5].

In RNS each operand is encoded as a vector of residues, computed with respect to a set of M
pairwise relatively prime integers called the moduli. The later form a set W = {m1, m2, . . . , mM},
which is called the base of the RNS. All integers A, B with 0 ≤ A, B <

∏M
i=1 mi have

a unique RNS representation A
RNS←→ {A1, A2, . . . , AM} and B

RNS←→ {B1, B2, . . . , BM},
where Ai = 〈A〉mi , Bi = 〈B〉mi for i = 1, 2, . . . , M , and 〈x〉mi denotes the residue of x

modulo mi. Multiplication, addition, and subtraction in RNS are described by Z = A � B
RNS←→

{Z1, Z2, . . . , ZM}, where Zi = 〈Ai � Bi〉mi and � denotes any of the aforementioned operations.
Significant speedup over the corresponding binary operations can be achieved, since the Zis are
computed in parallel, each in a separate arithmetic unit (channel), because their computation
depends only on Ai, Bi, and mi, and no carry propagation among the channels is required. Among
the most popular three-moduli bases are the {2n, 2n − 1, 2n + 1} and the {2n, 2n − 1, 2n−1 − 1}
[6]–[8]. Therefore, a modulo 2n − 1 adder is essential in the most popular RNS implementations.

Modulo 2n − 1 adders also find great applicability in fault-tolerant computer systems. They are
commonly used for implementing residue, inverse residue, product (AN) and checksum arithmetic
codes. For low-cost implementations of such codes, modulo 2n − 1 adders are used both for
the encoding and the checking process [2]. Such codes, are also used extensively in checksum
computation, and error detection in TCP/IP networks [3].

Recently, one’s complement addition has also been employed in the design of high-speed
floating-point arithmetic units [4], [5]. In [4] an 161-bit end-around carry (EAC) adder was used in
the design of a single pass floating-point multiplier, while in the dual pass version of the design, it
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was substituted by an 81-bit EAC adder. Additionally, Pillai et al. in [5] have presented a triple-
datapath architecture for floating point addition, which employs 1’s complement adders, and offers
significant savings in the power dissipation.

Several proposals have already appeared to the fast modulo 2n − 1 adder design problem. Single
and two-level carry lookahead modulo 2n − 1 adders have been presented in [9]. To achieve even
higher speeds, parallel-prefix carry-computation design approaches have been adopted in [10]–[14].
In [10] and [12] the required end-around carry operation is achieved by feeding back the carry
output of a parallel-prefix integer addition unit via an extra prefix level. This technique apart from
adding an extra prefix level also suffers from the unlimited fanout loading problem at the re-entering
carry line. In [11] it was shown that modulo 2n − 1 addition can be performed by recirculating the
generate and propagate signals, instead of the traditional end-around carry approach. In this way,
the need for an additional prefix level is cancelled, and parallel-prefix modulo 2n − 1 adders with
minimum logic depth (equal to the fastest integer parallel prefix adders) are derived. Although the
fundamental theory and a general architecture were presented in [11], no straightforward design
method was given when n �= 2k. This task was left to the intuition of the designer. Extending the
work of [11], in [14] a method was given to produce Kogge-Stone like modulo 2n − 1 adders for
every n. Finally in [13], parallel-prefix adders, similar to those of [11], using prefix operators of
valency greater or equal to 2 were presented, only for the case that n is of the 2k form.

In this paper a novel carry-computation architecture for parallel-prefix modulo 2n − 1 adders,
for arbitrary values of n, is introduced. The proposed architecture actually describes a whole
family of adders, which exhibits minimum logic depth and small operator count. At first the
basic theory of idempotency is extended for the case of modulo 2n − 1 addition and it is shown
that terms produced in a parallel-prefix tree can be further associated in a circular manner. Then,
a systematic methodology for designing a family of modulo 2n − 1 adders is presented. Static
CMOS implementations are finally utilized for real comparisons of the proposed structures against
previously reported parallel-prefix modulo 2n−1 adders. Experimental results indicate that several
members of the proposed family of modulo 2n − 1 adders can significantly reduce the area penalty
of previously reported designs [14], while maintaining the highest speed compared to [10].

The rest of the paper is organized as follows. Some background material on parallel-prefix
addition and the notation used are given in Section 2. The extension of the idempotency property
is introduced in Section 3, while the family of modulo 2n − 1 adders is presented in Section 4.
Quantitative results are presented in Section 5. Finally, conclusions are drawn in Section 6.

2 Background and Definitions

Suppose that A = an−1an−2 . . . a0 and B = bn−1bn−2 . . . b0 represent the two numbers to be
added and S = sn−1sn−2 . . . s0 their sum. An adder can be considered as a three-stage circuit.
The preprocessing stage computes the carry-generate bits gi, the carry-propagate bits pi, and the
half-sum bits hi, for every i, 0 ≤ i ≤ n − 1, according to:

gi = ai · bi pi = ai + bi hi = ai ⊕ bi,

where ·, +, and ⊕ denote the logical AND, OR and exclusive-OR operations respectively. The
second stage of the adder, hereafter called the carry-computation unit, computes the carry signals
ci, for 0 ≤ i ≤ n − 1 using the carry generate and carry propagate bits gi and pi. The third stage
computes the sum bits according to:

si = hi ⊕ ci−1.
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Figure 1. The (a) Kogge-Stone and (b) Ladner-Fischer Parallel-Prefix Structures.

Since in all adders the first and the third stage are identical, in the following we concentrate on the
carry-computation unit. Several algorithms have been proposed for the carry computation problem.
Carry computation is transformed into a prefix problem using the operator ◦, which associates pairs
of generate and propagate signals and was defined in [15] as follows,

(g, p) ◦ (g′, p′) = (g + p · g′, p · p′). (1)

In a series of associations of consecutive generate/propagate pairs (g, p) the notation (Gk:j , Pk:j),
k > j, is used to denote the group generate/propagate term produced out of bits k, k − 1, . . . , j,
that is,

(Gk:j , Pk:j) = (gk, pk) ◦ (gk−1, pk−1) ◦ . . . ◦ (gj+1, pj+1) ◦ (gj , pj). (2)

Although the ◦ operator is not commutative, the idempotency property [16],

(Gi: j , Pi:j) = (Gi: k, Pi:k) ◦ (Gm: j , Pm:j) (3)

holds for it, where i > m ≥ k > j.
We define as length of a group generate/propagate term (or simply length), the number of distinct

generate/propagate pairs (gk, pk) that have been associated for its computation. The length of the
group generate/propagate term (Gk:j , Pk:j) is obviously k − j + 1, k > j. When two group signals
are further associated the result will have a length equal to the sum of the lengths of the two operands
minus any overlapping terms due to idempotency.

The parallel-prefix structures proposed by Kogge-Stone [17] and Ladner-Fisher [18] for an 8-bit
carry-computation unit are shown in Figure 1. The operator ◦ is represented as a node (•), while
white nodes are buffering nodes. In any parallel-prefix graph we will number the prefix levels from
0 (the (g, p) signals-pair level) up to m (the level that produces the carries) and the bit columns from
0 up to n − 1. Since the • nodes are placed on the grid of rows and columns we can refer to any of
them by the pair (prefix level, bit column). For example in Figure 1(a) the operator (1, 5) is pointed.
The prefix structures proposed by Kogge-Stone [17], Ladner-Fischer [18] and Knowles [19] are of
special practical interest, since they offer minimum logic-depth solutions to the carry-computation
problem.

3 The Case of Modulo 2n − 1 Addition

In this section the basic theory introduced in [11] is revisited, and a novel property of
idempotency is introduced. According to [11] in the case of modulo 2n − 1 addition, each carry ci,
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0 ≤ i ≤ n− 1, is produced by combining the carry generate and propagate pairs using the formula,

Gi = (gi, pi) ◦ (gi−1, pi−1) ◦ . . . ◦ (g0, p0) ◦ (gn−1, pn−1) ◦ . . . ◦ (gi+1, pi+1) (4)

where, ci = Gi and c−1 = cn−1. It should be noted that in contrast to integer addition, the number
of pairs (gk, pk) that have to be associated for the generation of each carry is equal to n.

Due to (4) the definition of a group generate/propagate term (Gk:j , Pk:j) is extended here to the
case where k < j, 0 ≤ k, j ≤ n − 1, and is defined as,

(Gk:j , Pk:j) = (Gk: 0, Pk: 0) ◦ (Gn−1:j , Pn−1:j). (5)

Therefore, in the general case (k > j or k < j), the length of a group generate/propagate term
(Gk:j , Pk:j) is equal to

〈
k − j + 1

〉
n

. Assuming an intermediate index k, 0 ≤ k ≤ n − 1, each
carry ci of (4) can be expressed as,

Gi = (Gi : k, Pi : k) ◦ (Gk−1 : i+1, Pk−1 : i+1). (6)

The following Theorem reveals the cyclic nature of the idempotency property in the case of
modulo 2n − 1 addition, and is used as the basis for the design of the family of adders proposed in
this paper.

Theorem 1. Let

(Gi:k, Pi:k) =

{
(gi, pi) ◦ (gi−1, pi−1) ◦ . . . ◦ (gk, pk), if i ≥ k

(gi, pi) ◦ (gi−1, pi−1) ◦ . . . ◦ (g0, p0) ◦ (gn−1, pn−1) ◦ . . . ◦ (gk, pk), if i < k
.

Then it holds that

(Gi:k, Pi:k) ◦ (Gk−1:i+1, Pk−1:i+1) ◦ (Gi:k, Pi:k) = (Gi:k, Pi:k) ◦ (Gk−1:i+1, Pk−1:i+1).

Proof. Unrolling the prefix operator ◦ it follows that,

(Gi : k, Pi : k) ◦ (Gk−1 : i+1, Pk−1 : i+1) ◦ (Gi : k, Pi : k) =
= (Gi : k + Pi : k · Gk−1 : i+1 , Pi : k · Pk−1 : i+1) ◦ (Gi : k, Pi : k)
= (Gi : k + Pi : k · Gk−1 : i+1 + Pi : k · Pk−1 : i+1 · Gi : k , Pi : k · Pk−1 : i+1 · Pi : k)
= (Gi : k(1 + Pi : k · Pk−1 : i+1) + Pi : k · Gk−1 : i+1 , Pi : k · Pk−1 : i+1)
= (Gi : k + Pi : k · Gk−1 : i+1 , Pi : k · Pk−1 : i+1)
= (Gi : k, Pi : k) ◦ (Gk−1 : i+1, Pk−1 : i+1).

Theorem 1 simplifies group generate/propagate terms of length greater than n to terms of length
equal to n. For example assume the case of a modulo 25 − 1 adder. The association of (G4:1, P4:1)
(length 4 term) with (G1:3, P1:3) (length 4 term) is expected to lead to a group term of size 7, since
under the normal definition of idempotency only the overlapping term (g1, p1) can be simplified.
However, due to Theorem 1 the resulting term is (G4:0, P4:0), which is a length-5 term, since,

(G4: 1, P4: 1) ◦ (G1: 3, P1: 3) = (G4: 3, P4: 3) ◦ (G2: 1, P2: 1) ◦ (G1: 0, P1: 0) ◦ (G4: 3, P4: 3)
= (G4: 3, P4: 3) ◦ (G2: 0, P2: 0) ◦ (G4: 3, P4: 3)
= (G4: 3, P4: 3) ◦ (G2: 0, P2: 0) = (G4: 0, P4: 0).

Theorem 1 is an extension of the basic idempotency property presented in [16]. The assumption
that two group generate/propagate terms must meet or overlap in order to be associated can be
also considered in a circular manner. Figure 2 explains the circular meet-or-overlap for the case of
(G4:1, P4:1) and (G1:3, P1:3).
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(G4: 1, P4: 1) ◦ (G1: 3, P1: 3)

�

(g4, p4) ◦ (g3, p3) ◦ (g2, p2) ◦ (g1, p1) ◦ (g1, p1) ◦ (g0, p0) ◦ (g4, p4) ◦ (g3, p3)
�
�

�
�

�
�

�
�

�
(g4, p4) ◦ (g3, p3) ◦ (g2, p2) ◦ (g1, p1) ◦ (g0, p0)

Figure 2. Traditional and Circular Idempotency.

4 The Proposed Design Methodology

A systematic methodology for designing a family of area-time efficient parallel-prefix modulo
2n − 1 adders is introduced in this section. All derived family members, i.e., prefix structures, have
minimum logic depth equal to m = �log2 n� prefix levels, and the number of operators employed
for carry generation can vary according to the value of n and the design selected in each case.

According to Eq. (4) the length of all carry equations in a modulo 2n − 1 adder is equal to n.
Therefore, among the possible lengths of group generate/propagate terms that can be generated in
at most m − 1 prefix levels the ones that allows us to build, at the mth level, group terms of length
greater than n, due to Theorem 1, or equal to n are sought. In any other case the generation of a
valid carry relation is impossible. Let Sa and Sb represent the length of any two group terms, which
are generated in the first m − 1 prefix levels, and are selected to complete carry generation in the
mth level. Then, the selected Sa and Sb should satisfy the following condition,

Sa + Sb ≥ n. (7)

The way group generate/propagate terms can be produced in the first m − 1 prefix levels of the
carry-computation unit can be graphically represented via a graph, called the Length Dependency
Graph. The Length Dependency Graph is the same for all values of n with the same logic depth
m = �log2 n�, and is denoted as LDGm. The LDGm consists of m levels and contains one vertex
for each possible length of the group terms that can be produced in the first m − 1 levels of the
carry-computation unit. The value inside each vertex is equal to the length that it represents. For
example LDG4 is drawn in Figure 3(a). At level 0 only one vertex exists with value equal to 1,
which represents the length-1 terms, i.e., the generate/propagate pairs (g, p).

The edges of LDGm describe the way that each possible length of group terms can be produced.
For example, the edge (4) → (6) with weights {2, 3, 4} implies that a length-6 group term can be
produced on the 3rd prefix level by associating a length-4 term of the second level with a suitable
term of length either 2 or 3 or 4. The associations of terms of length 4 and 3, and 4 and 4, require
the use of idempotency in order to produce a length-6 term.

Therefore, for each pair of lengths {Sa, Sb} that satisfies condition (7), and by following the
connections of LDGm a parallel-prefix carry-computation unit for a modulo 2n − 1 adder can be
constructed. To simplify the design procedure, for each selected pair {Sa, Sb} the Design Graph
DGn,{Sa,Sb} is extracted from the corresponding LDGm. The DGn,{Sa,Sb} is a subgraph of LDGm,
and it is derived by following the paths of the LDGm that depart from the vertices with values Sa

and Sb, respectively, up to level 0. The vertices that do not belong to any of these paths are excluded.
For example the DG10,{8,5} in case of modulo 210 − 1 addition is derived from LDG4 of

Figure 3(a), and is presented in Figure 3(b). Since the pair {8, 5} satisfies condition (7) for the
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Figure 3. (a) The Length Dependency Graph for 4 prefix levels implementations
LDG4 and (b) the corresponding Design Graph DG10,{8,5}.

case of modulo 210 − 1 addition, it guarantees that the carries ci can be generated in the 4th prefix
level. As shown by Figure 3(b), the construction of group terms of length 8 and 5 in the 3rd prefix
level leaves many choices to the designer, especially for the length-5 terms. It should be noted that
the generation of carries the carries ci in the 4th prefix level requires the existence of group terms
with all possible prefixes (gi, pi), i = 0, 1, . . . , 9, produced either from group terms of length 8 or
terms of length 5, respectively.

In general, even after the selection of a valid pair {Sa, Sb} the design space is left with numerous
solutions. Based on LDGm we can produce exhaustively all possible solutions of modulo 2n − 1
adders and select the one that best matches our design constraints. Since the design-solutions space
is huge we set certain rules that allow only a subset of all possible solutions to be derived.

4.1 Reduction Rules

The proposed systematic design procedure is based on treating the even-indexed {0, 2, 4, . . .}
and the odd-indexed {1, 3, 5, . . .} bit columns of the prefix tree separately. Specifically, all group
generate/propagate terms produced on the even-indexed columns of the ith prefix level have the
same length denoted as Leven(i). Additionally, all group terms generated on the odd-indexed
columns of the ith prefix level are also of equal length, and their length is denoted as Lodd(i).
On the last, i.e., mth, prefix level, the group terms from the even and the odd-indexed columns are
properly associated, in order the carries of the modulo 2n − 1 addition, according to Eq. (4), to be
produced.

The reduction rules concern the length of the generate/propagate terms that can be produced on
the even or the odd-indexed columns, and are applied in all the prefix levels up to the (m − 1)st
level. The input connections to the operators of the mth level are treated separately.

REDUCTION RULES FOR THE EVEN-INDEXED BIT COLUMNS

E1. On the
⌈

n
2

⌉
even-indexed columns only group terms of even length are produced.

E2. The even-length group terms of the ith prefix level are produced by associating group terms
of length 2i−1 of the (i − 1)st prefix level, possibly by using idempotency. This rule implies
that the operators placed at the even-indexed columns of the ith level associate only terms of
lenght 2i−1, steming from the even-indexed columns of the previous level. For example the
generation of a length-6 group term on the 3rd prefix level imposes the association of two
group terms of length 4 that have been generated on the 2nd level.
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Figure 4. (a) The Simplified LDG for 4 prefix levels implementations SLDG4 and (b)
the corresponding simplified design graph SDG10,{8,5}.

REDUCTION RULES FOR THE ODD-INDEXED BIT COLUMNS

O1. On the
⌊

n
2

⌋
odd-indexed columns only group terms of odd length are produced.

O2. The odd-length, Lodd(i), group terms of the ith prefix level are generated by associating a
group term of even length 2i−1 of the (i − 1)st level and a term of length Lodd(i) − 2i−1

generated on the kth level, with k =
⌈
log2

(
Lodd(i) − 2i−1

)⌉
, k < i. This rule implies that

the operators placed on the odd-indexed columns of the ith prefix level associate only terms
of length 2i−1 that appear on the even-indexed columns of the (i − 1)st level and terms of
odd lenght, i.e., Lodd(i)− 2i−1, generated on the odd-indexed columns of any previous level.

Design rules E.2 and O.2 determine the exact way each term, of even or odd length, will be
generated in the prefix tree. They are applied in a bottom-up fashion beginning from the (m − 1)st
level up to the first level, in order to predetermine the length of all intermediate group terms that
need to be produced.

The separate treatment of the odd the even-indexed columns, along with the introduced design
rules, specify a subset of all possible solutions that can be derived by LDGm. Applying the
reduction rules to LDGm we produce a simplified length dependency graph denoted as SLDGm.
The SLDG4 is shown in Figure 4(a). The vertices of SLDGm are separated in two sets, namely
Veven (vertices with even values) and Vodd (vertices with odd values), which correspond to the even
and the odd-length group terms that can be produced by the parallel-prefix carry-computation unit.

Similar to Sa and Sb, we define Seven ∈ Leven(i) and Sodd ∈ Lodd(i), 1 ≤ i ≤ m − 1, as the
length of the group terms that are selected from the even and the odd-indexed columns, respectively,
to complete carry generation, and dn to be defined as,

dn =

{
n + 1, if n is odd

n, if n is even
. (8)

Following relation (7) the selected Seven and Sodd should satisfy the following condition,

Seven + Sodd ≥ dn. (9)

The variable dn is used, since a more strict bound than condition (7) is required by the proposed
methodology when n is odd. Therefore for each pair of even or odd lengths {Seven, Sodd} that
satisfy condition (9) a simplified design graph (SDGn,{Seven,Sodd}) can be derived from the SLDGm.
The SDG10,{8,5} extracted from SLDG4 is shown in Figure 4(b). The SDG10,{8,5} allows the design
of a modulo 210 − 1 adder in a straightforward manner, and it is less complex than DG10,{8,5} of
Figure 3(b), since several solutions are omitted due to the adoption of the reduction rules.
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4.2 Design Procedure

After the derivation of SDGn,{Seven,Sodd}, the proposed design procedure is described by the
following steps, including the connections of the mth prefix level, which completes generation
of all carries ci according to Eq. (4).

Step 1: Definitions

Set m = �log2 n�, β = min{Seven, Sodd}, and γ = Seven + Sodd. L(u) denotes the
value of vertex u in the SDGn,{Seven,Sodd}.

Step 2: First prefix level

Place
⌈

n
2

⌉
operators on the even-indexed columns of the first prefix level. Each operator

(1, j) with j ∈ {0, 2, . . . , dn − 2} connects to the nodes (0, j) and (0,
〈
j − 1

〉
n
). Add

buffering nodes to the odd-indexed columns of the first prefix level.

Step 3: Subsequent m − 2 prefix levels

Examine the ith level of the SDGn,{Seven,Sodd}.

• If a vertex u ∈ Veven exists, then place
⌈

n
2

⌉
operators on the even-indexed

columns of the ith prefix level. Each operator (i, j), with j ∈ {0, 2, . . . , dn − 2}
connects to the operators (i − 1, j) and (i − 1,

〈
j − L(u) + 2i−1

〉
dn

).

• If a vertex u ∈ Vodd exists, then place
⌊

n
2

⌋
operators on the odd-indexed columns

of the ith prefix level. Each operator (i, j) with j ∈ {1, 3, . . . , dn − 3} connects
to the operators (i − 1, j) and (i − 1,

〈
j − L(u) + 2i−1

〉
dn

). Additionally if
n is even add the operator (i, dn − 1) and connect it to (i − 1, dn − 1) and
(i − 1,

〈
2i−1 − L(u) − 1

〉
dn

), respectively.

Add buffering nodes to the remaining either even or odd columns of the ith prefix level.

Step 4: Connections on the last prefix level

Construct the mth prefix level consisting of n operators.

• Each operator (m, j) with j ∈ {0, 2, . . . , dn − 2} connects to (m − 1, j) and
(m − 1,

〈
j − β + γ

〉
dn

).

• Each operator (m, j) with j ∈ {1, 3, . . . , dn − 3} connects to (m − 1, j) and
(m−1,

〈
j−1−β+γ

〉
dn

). Additionally if n is even add the operator (m, dn−1)
and connect it to (m − 1, dn − 1) and (m − 1,

〈
γ − β − 2

〉
dn

), respectively.

The family of parallel-prefix modulo 210 − 1 adders, designed according to the proposed design
methodology, are shown in Figure 5, along with the corresponding simplified design graphs derived
from SLDG4. It can be verified that each solution has its own internal wire length and fan-out
loading, while the number of operators, i.e., nodes •, used in each case range from 30 to 35.
The carry-computation units with the minimum number of operators in general have less-complex
wiring and less nodes with increased fanout compared to the solutions with more operators. The
same observations can be made for all carry-computation units that employ the minimum number
of operators.
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Table 1. Area(µm2) and Time(ns) Results using Static CMOS implementations.
(a)

n [10] LF [10] KS [14] Proposed
Area Time Area Time Area Time SDGn Area Time

5 3981 1.07 5559 1.07 5307 0.85 SDG5,{4,3} 5307 0.85
6 4464 1.12 6669 1.08 6523 0.84 SDG6,{4,3} 6523 0.84
9 7443 1.29 15668 1.24 12534 1.07 SDG9,{6,5} 8654 1.17
20 16985 1.64 26569 1.60 26943 1.31 SDG20,{16,5} 20250 1.36
24 18805 1.66 35099 1.56 30378 1.34 SDG24,{16,9} 24156 1.44
56 48382 1.91 77500 1.77 93289 1.56 SDG56,{32,25} 58081 1.64

(b)

n Time Area
[10] LF [14] Proposed

5 1.07 3981 3013 3013
6 1.12 4464 3847 3847
9 1.29 7443 7088 5958
20 1.64 16985 16858 13738
24 1.66 18805 19168 14797
56 1.91 48382 59896 43675

5 Performance Evaluation

The proposed adders were compared against the modulo 2n − 1 adders proposed in [10] when
either a Ladner-Fischer [18](LF) or a Kogge-Stone [17](KS) prefix tree is used, as well as, against
the reduced modulo 2n − 1 adders proposed in [14]. Each adder was described in Verilog HDL and
mapped on the UMC-VST 25 technology library (0.25µm, 1.8/3.3V, up to 5 metal layers) using
the Synopsys� Design Compiler. Each design was optimized for speed targeting a strict maximum
delay of 0.8ns for n = 5, 6, 9 and 1.2ns for n = 20, 24, 56. The obtained results are shown in
Table 1(a).

Since the proposed adders do not suffer from the problem of the high fanout loading at the last
stage and need one prefix level less than the adders proposed in [10], they are faster than them,
regardless of which prefix structure, LF or KS, is used. On the average of the examined cases,
the proposed adders are faster than those of [10] that use a LF or a KS prefix tree by 16% and
13%, respectively. Considering the implementation area, the proposed adders, although faster in
all examined cases, require significantly less area than the faster adders of [10], the ones with
a KS prefix tree. On the average of the examined cases the area savings offered is 22%. The
implementation area of the proposed adders is larger than that of [10] with a LF prefix tree by an
average of 21%.

The results of Table 1(a) also reveal that the proposed adders are slightly slower than the adders
proposed in [14]. This was expected since both architectures require the same prefix levels and
the fanout loading is bounded. It should be noted that the Kogge-Stone-like modulo 2n − 1 adders
proposed in [14] lead to the same prefix trees as the ones proposed in this paper when n = 5, 6.
However, the proposed adders require significantly less prefix operators and hence implementation
area for larger values of n. For example, in the case of n = 56, 84 less operators are required,
which leads to an area reduction of 37%. On the average of the examined cases the area savings
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offered by the proposed adders over the adders of [14] is 18.5%.
We also synthesized the proposed adders targeting a delay equal to the delay of the most area-

efficient architecture, as derived from Table 1(a). The obtained results are shown in Table 1(b). It
can be easily verified that the proposed architectures require less implementation area in all cases.
The area reductions achieved are in average 13.6% and 17.5%, when compared to the adders of
[14] and of [10] with a LF prefix tree, respectively.

6 Conclusions

Fast and compact modulo 2n − 1 adders are greatly appreciated in RNS implementations,
computer networks and fault-tolerant computer systems. In this paper, based on an extension
of the idempotency property, we have introduced a new systematic design methodology, which
leads to a family of parallel-prefix modulo 2n − 1 adders. All members of each family share the
minimum logic depth property, whereas each member, has its own operator-count, fanout, and wire-
length characteristics. Static CMOS implementations reveal that the proposed adders outperform
all previously reported solutions in operation speed and/or implementation area.
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Figure 5. The modulo 210 − 1 carry computation units using the (a) SDG10,{8,3}, (b)
SDG10,{8,5}, (c) SDG10,{6,5}, (d) SDG10,{4,7}, (e) SDG10,{6,7}, and (f) SDG10,{8,7}.
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