
A 200-MHz RNS Core
H. T. Vergos*

Abstract – The need for fast computation of digital
signal processing algorithms and the development of
VLSI techniques of fabrication have motivated the
development of efficient hardware implementations of
Residue Number System (RNS) arithmetic. In this
paper the architecture and implementation details of a
core capable to perform both addition and
multiplication operations over the moduli set <232, 232-1
and 232+1> is presented. The core accepts its input
operands in either residue or straight binary forms.
Heavy pipelining of the multiplication modules is used
to achieve a 200 MHz operating frequency in a 0.6 um
implementation technology. .

1 Introduction

The use of pre-designed (either in-house or
provided as third-party Intellectual Property blocks /
cores) blocks, is the only means for handling both
the ever shrinking time to market and the increased
design effort complexity imposed by the millions of
transistors in contemporary integrated circuits. In
this paper, we present a core capable of performing
addition and multiplication over the Residue Number
System (RNS) defined by the moduli <232, 232-1,
232+1>.

Since the 1950s there has been an increasing
interest in Residue Number System (RNS) arithmetic
as a basis for computational hardware [1 - 3].
Because of the complexity of division and
comparison, RNS is judged unsuitable for general
purpose computers. However, the growing
importance of digital signal processing within
electrical engineering as well as the newly
introduced design techniques for RNS hardware have
renewed the interest in RNS arithmetic. RNS is
especially suitable for the implementation of DSP
related algorithms due to its capabilities of rapid
computations in the simple operations of addition,
substraction and multiplication.

A set of L moduli suppose (m1, m2, …, mL) that are
pair-wise relative prime defines a RNS. Any integer
X, with 0 ≤ X < M, where M = m1 * m2 * … * mL
has a unique representation in the RNS system given
by the L-tuple of residues X= (x1, x2, …, xL), where
xi = X mod mi. A two operand RNS operation,
suppose ♦, is defined as (Z1, Z2, …, ZL) = (X1, X2,

* Department of Computer Engineering & Informatics,

University of Patras, 26 500 Greece &
Computer Technology Institute, 3 Kolokotroni Str, 262
21 Patras, Greece.
E-mail : vergos@cti.gr
Tel : +30 – 61 – 960 312, Fax : +30 – 61 – 991 909.

…, XL) ♦ (Y1, Y2, …, YL), where Zi = (Xi ♦ Yi) mod
mi. For most RNS applications ♦ is either addition or
multiplication. According to the above, each residue
can be computed independently of the others
allowing fast data processing in L parallel
independent channels.

The latency of an RNS operation depends on the
latency of the slowest among the channels.
Therefore, for nearly equal delay among the
channels, their moduli should be close as possible.
Moreover, the choice of the moduli dictates the
maximum number M, of distinct numbers that can be
represented. Finally, one has to consider the
complexity and cost of the transformations between
binary to RNS encoding process, since the binary
system has still to be used because of its memory
storage efficiency. A choice often made is L = 3 with
moduli of the form m1 = 2n, m2 = 2n-1 and m3 = 2n+1,
because of the existence of efficient combinational
designs of residue generators, adders and multipliers
for such moduli. In this paper, we further consider n
= 32, since this gives us a representation range
similar to that of a 96-bit precision binary system.
This precision is adequate for most digital signal
processing algorithms. For meeting the equal channel
delay goal, we further adopt the diminished number
representation [4] for the modulo 232+1 channel. In
the diminished-one system each number X is
represented by X* = X – 1. The representation of 0 is
treated in a special way. Therefore, the circuits that
implement the diminished–one modulo 2n+1
operations are combinational circuits accepting n bits
wide operands.

In a RNS a datum that is stored in binary may have
to be converted into RNS and then used in several
operations before it needs to be converted back to
binary and stored. It was also chosen to include in
the presented core a binary to RNS converter (a
circuit that in other design philosophies could be
thought as a wrapper of a RNS core) as well as to
augment the instruction set in order to include
convert and process operations. A similar input and
output interface is used for the core, such that more
than one cores can be cascaded in order to handle
different RNS computations.

The rest of the paper is organized as follows : the
interface, architecture and instruction set of the core
is presented in the next section. The specific
implementation of the modules used are presented in
Section 3, along with area and delay results. The
conclusions are drawn in the last Section.

2 RNS Core Architecture

Figure 1 indicates the RNS core interface.

Operand B (31 : 0)
Operation (1:0)

B / RNS

Clk ()

Result (31 : 0)Operand A (31 : 0)

Result_Valid

Figure 1. Input / Output Interface of the RNS core.

On the inputs side there is a 32 bit bus for each
operand. Each operand is introduced to the core
during three consecutive cycles. In case of RNS
operands, the modulo 232, the modulo 232-1 and the
modulo 232+1 of the operand should appear at the
busses of operands A and B during respectively the
first, the second and the third consecutive cycle. The
buses are sampled with the rising edge of the clock.
In case of 96-bit binary operands the operands
should appear from the least significant 32-bit
quantity to the most significant one during the three
consecutive clock cycles.

The desired operation of the core is designated by
the values present during the first cycle of a new
operation at the Operation bus and the B(inary)/RNS
line. Table 1 lists the possible operations. Note that
when 00 is the desired operation and B/RNS is at 0
only the Operand A bus is sampled for input.

Op B/RNS Description
00 0 Binary to RNS conversion
00 1 Invalid
01 0 Addition of binary operands
01 1 Addition of RNS operands
10 0 Multiplication of binary operands
10 1 Multiplication of RNS operands
11 X Reserved for Testing purposes

Table 1: RNS core operations.

The result of the RNS core is present some cycles
later on the Result Bus in a way similar to that of the
input. However, the result is always in a RNS form.
Therefore during the first cycle the modulo 232 of the
result appears, while in the two subsequent cycles
the modulo 232-1 and the modulo 232+1 in
diminished-one form of the result appear on the same
bus. To handle correct sampling of the results by
subsequent modules the Result_Valid output is
asserted during the three output cycles. It is obvious
that several RNS cores can be cascaded providing a
pipelined at the instruction level RNS application.

Figure 2 presents a more detailed look at the
architecture of the core and depicts the main design
blocks. The two residue generators are used only
when the operands are in binary format and
respectively produce the modulo 232-1 and the

modulo 232+1 of the input operands. Note that this
outline description hides a lot of the actual resource
sharing that is performed on chip. For example each
residue 232-1 generator can be built using two
modulo 232-1 adders. Moreover, two more such
adders are needed in the modulo 232-1 channel; one
for the addition and one as the last stage of the
multiplier. Therefore, one may suppose that six
copies of a modulo 232-1 adder are required in the
core. However, efficient resource sharing and the
way that the input operands arrive permits to perform
these operations using only three modulo 232-1
adders, without any conflicts.

Input Buffers

Modulo 2n

Channel
Modulo 2n-1

Channel
Modulo 2n+1

Channel

Multiplexers &
Sequencing Logic

Output Buffers

232-1
Residue

Generator

232+1 Diminished -1
Residue Generator

Multiplexers Multiplexers

Operand B (31 : 0) Operation (1:0) B / RNSOperand A (31 : 0)

Clk ()

Result (31 : 0) Result_Valid
Figure 2. Architecture of the RNS Core.

If the operation was just a conversion from binary
to RNS the outputs of the residue generators are sent
to the outputs. In all other cases the residue
representation of the operands (that is, either the
outcome of the generators or the input buffers
contents in case of operands already in RNS
representation) are sent to the three channels. Note
that the three channels perform their operation in
parallel and independently and that the modulo 2n
channel starts its operation earlier than the rest two
(since both its operands are input earlier and no
residue generation is required). Both generators
require the same (two) clock cycles to produce their
results and given the ordering in the arrival of the
inputs the modulo 2n-1 result is also available always
a cycle earlier than those of the modulo 2n+1 channel
and at most two cycles later than the result of the
modulo 2n channel.

Table 2 shows the operations performed in each
cycle and channel for converting and multiplying
two numbers that are introduced to the core in 96-bit
binary representation. This is the operation that

requires the most cycles for its completion.

Cycle # Operations Performed

1

232: Operand Sampling
232-1: -
232+1: -

2 232: Multiplication Cycle 1
232-1: Residue Generation Cycle 1
232+1: -

3 232: Multiplication Cycle 2
232-1: Residue Generation Cycle 2
232+1: Residue Generation Cycle 1

4 232: Multiplication Cycle 3
232-1: Multiplication Cycle 1
232+1: Residue Generation Cycle 2

5 232: Multiplication Cycle 4
232-1: Multiplication Cycle 2
232+1: Multiplication Cycle 1

6 232: Multiplication Cycle 5
232-1: Multiplication Cycle 3
232+1: Multiplication Cycle 2

7 232: Multiplication Cycle 6
232-1: Multiplication Cycle 4
232+1: Multiplication Cycle 3

8 232: -
232-1: Multiplication Cycle 5
232+1: Multiplication Cycle 4

9 232: Output Result
232-1: Multiplication Cycle 6
232+1: Multiplication Cycle 5

10 232: -
232-1: Output Result
232+1: Multiplication Cycle 6

11 232: -
232-1: -
232+1: Output Result

Table 2. The operations performed in each cycle for
a binary multiplication.

A new operation can either begin after the fourth
cycle of the previous operation in the case that the
later involved residue generation or at every new
cycle when the inputs of the last operation were in
residue format, if an extended input interface is used.

3 Implementation Analysis

In this section we focus on the architectures chosen
for the design of the individual blocks of Figure 2.
The presented implementation results were gathered
by describing each design module in HDL and
mapping to the AMS CUB implementation
technology (0.6 µm, 2-metal layer, 5.0 V) using the
Design Analyzer tool of Synopsys Inc. Each
mapped design was recursively optimized until the
tool was unable to provide a faster design. Then the
tool was instructed to recover as much area as
possible. All delay results assume worst case process
parameters and are expressed in ns, whereas all area
results are expressed in mils2. Table 3 summarizes
the implementation results and also lists the cycles of
a 200 MHz clock required by each module.

Design Module Area Delay Cycles
232-1 Residue Generator 1532.4 4.97 2
232+1 Residue Generator 1983.2 7.65 2

232 Adder 876.5 4.29 1
232-1 Adder 1341.2 4.97 1
232+1 Adder 1356.4 4.79 1

232 Multiplier 5284.1 17.01 6
232-1 Multiplier 11156.2 29.18 6
232+1 Multiplier 12090.5 29.72 6

Whole Core 46483.7

Table 3. Summary of the implementation results

The design of each 232-1 residue generator is given

in Figure 3 and is composed of a single modulo 232-1
adder. Supposing that the three 32 bit slices of the
96-bit operand X are symbolized as MS (most
significant), MES (medium significant) and LS (least
significant) the residue generation is performed in
two cycles : a) during the first cycle LS is added with
MES and b) during the second cycle the result is
added with MS. Several architectures have been
proposed for the design of the modulo 232-1 adder [5
– 7]. Although the architecture of [7] requires the
largest implementation area, since we are mainly
interested in the attained execution frequency, we
have adopted it in this paper.

Modulo
232-1 Adder

From Input
Buffer

Output Register

Figure 3. Design of the 232-1 Residue Generator

The design of each 232+1 residue generator is based

on the generators proposed in [8]. We have modified
the last stage of these generators in order to produce
the diminished-one residue representation, that is, to
also subtract 1 from the original result. Although,
these generators can be pipelined at the full-adder
level, in the proposed design this was not necessary,
since only two pipeline stages were enough to
provide the same clock frequency with that of the
232-1 residue generator.

For the modulo 232-1 multiplier it is obvious that
the ROM-based solutions that have been proposed in
the past based on look-up tables [9] are clearly
inapplicable. Combinational modulo multipliers that
are based on Carry Save Adder (CSA) trees have been
proposed in [10]. However in this specific case, such
an architecture would lead to the need for the addition
of 32 partial products; that is, a time inefficient design.
Attempts to reduce the number of partial products by
applying the Booth algorithm have appeared in [6, 11].
It has been recently shown [12] that for even values of
n, modified Booth modulo 2n-1 multipliers with the
minimal number of n/2 partial products can be

devised. Moreover, Wallace trees partial products
reduction have been shown [12] to be more efficient
than CSA arrays. In the proposed RNS core we adopt
the architecture of [12] along with Wallace trees
partial product reduction.

Even with this minimized number of partial
products the latency of the multiplication operation is
still too long. To spread and “hide” the latency of the
multiplication over more cycles a deep pipelining
scheme is used. The modulo 232-1 multiplier has 6
pipeline stages. The first stage accepts 4 partial
products and reduces them to two vectors of sum and
carry bits. Each of the following 4 stages accepts the
later two vectors and three more partial products and
performs a similar reduction. The last stage of the
multiplier is composed of the modulo 232-1 parallel
adder. The implementation results, indicated that the
pipelined version of the modulo 232-1 multiplier
requires approximately 32% more implementation area
than the non-pipelined one.

Several architectures have also been proposed for
the modulo 232+1 multiplier, for example, [6, 13]. For
the proposed RNS core the modified Booth
architecture proposed in [6] was adopted, along with
Wallace trees partial products reduction. The
multiplier was also in this case heavily pipelined using
6 stages in a similar to the modulo 232-1 way. The last
stage parallel diminished-one modulo 232+1 adder
follows the architecture recently proposed in [14].

The implementation of the core in the target 0.6um
technology achieves an operating frequency of 200
MHz. Operations of operands in residue format can be
done at this frequency, provided that the input
interface is extended. Operands in binary format attain
an execution frequency of 50 MHz since a new
operation can start every fourth cycle if the previous
operation also required a binary to RNS conversion.
The presented core offers high execution rate since in
the same implementation technology a 96-bit parallel-
prefix binary adder has an operating frequency of 34.7
MHz, while a 6-stage pipelined 96-bit operand binary
modified Booth multiplier achieves an operating
frequency of 19.4 MHz.

4 Conclusions & Future Work

The use of efficient cores becomes a necessity in
contemporary IC design in order to meet strict time
to market requirements and to manage increasing
design complexity. In this paper we have presented
the architecture and implementation details of a core
for RNS systems. Due to its capabilities of rapid
addition, and multiplication RNS is attractive for the
implementation of DSP related algorithms.

The presented core is capable of performing
addition and multiplication in operands already in
residue representation as well as to of 96-bit wide

binary operands. Several cores can also be connected
in a cascaded manner to handle larger computations.
The implementation of the presented core in a 0.6 um
technology can achieve an execution frequency of
200 MHz on RNS operands, and 50 MHz on
operands that need first to be converted from binary
to RNS.

We are currently developing higher level
generators that will produce parameterized HDL
descriptions of the design modules required for any
size RNS core in order to transform the presented
core in a totally soft one.

References
[1] M. A. Sonderstrand et. al., Residue Number System

Arithmetic : Modern Applications in Digital Signal
Processing, IEEE Press, New York, 1986.

[2] Koren, Computer Arithmetic Algorithms, Prentice–
Hall, 1993.

[3] K. M. Elleithy & M. A. Bayoumi, "Fast and Flexible
Architectures for RNS arithmetic decoding", IEEE
Trans. Circuits and Systems–II, vol. CAS-39, pp. 226
– 235, April 1992.

[4] L. M. Leibowitz, "A simplified binary arithmetic for
the Fermat number transform", IEEE Trans.
Acoustics, Speech, Signal Processing, Vol. ASSP-24,
pp. 356-359, 1976.

[5] C. Efstathiou, et. al., "Area–Time Efficient Modulo
2n-1 Adder Design", IEEE Trans Circuits and
Systems–II, Vol. 41, No 7, pp. 463–467, July 1994.

[6] R. Zimmermann, "Efficient VLSI Implementation of
Modulo (2n±1) Addition and Multiplication", in Proc.
of 14th IEEE Symp. on Comp. Arithmetic, pp. 158–
167, April 1999.

[7] L. Kalampoukas, et. al., "High-Speed Parallel-Prefix
Modulo 2n-1 Adders", IEEE Trans Computers, Vol.
49, No 7, pp. 673-680, July 2000.

[8] S. Piestrak, "Design of Residue Generators and
Multioperand Modular Adders Using Carry – Save
Adders", IEEE Trans Computers, Vol. 423, No 1,
January 1994.

[9] A. Skavantzos and P. B. Rao, "New multipliers
modulo 2n-1", IEEE Trans. on Computers, Vol. 41,
No. 8, pp. 957-961, August 1992.

[10] Z. Wang, G. A. Jullien, W. C. Miller, "An algorithm for
multiplication modulo 2N-1", Proc. of the 39th Midwest
Sym. on Circuits and Systems, pp. 1301-4, vol. 3, 1997.

[11] C. Efstathiou & H. T. Vergos, " Modified Booth 1's
Complement and Modulo 2n-1 Multipliers",7th IEEE
International Conference on Electronics, Circuits &
Systems, (ICECS '2K), Volume II, pp. 637-640.

[12] C. Efstathiou, et al., "On Modified Booth Modulo 2n-1
and 2n Multipliers", Journal of VLSI Signal Processing
Systems, under review.

[13] Y. Ma, "A Simplified Architecture for Modulo (2n+1)
Multiplication", IEEE Trans. Computers, Vol. 47, No.
3, pp. 333 – 337, March 1998.

[14] H. T. Vergos, et al., "High Speed Parallel-Prefix
Modulo 2n+1 Adders for Diminished-One Operands", to
be presented at the 15th IEEE Symposium on Computer
Arithmetic, Vail Colorado, 11-13 June 2001.

