
Modified Booth 1's Complement and Modulo 2"-1 Multipliers. 

C. Efstathiou' & H. T. V e r g ~ s * , ~  

'Department of Informatics, TEI of Athens, Ag. Spyridonos St., 12210 Egaleo, Athens, Greece. 
2 Computer Engineering & Informatics Dept., University of Patras, 26 500 Greece 

3 Computer Technology Institute, 3 Kolokotroni Str., 262 21 Patras, Greece 

Abstract 
In this paper we derive a novel modified Booth 

multiplier architecture which is based on 1's 
complement arithmetic. We also extend our theory to 
the design of modulo 2"-1 multipliers. The proposed 
1's complement modified Booth multipliers have an 
execution latency which is approximately the same as 
that offered by their 2's complement counterparts with 
a completely regular structure. Therefore, pipelined 
implementations of them can be derived in a 
straightforward manner. The proposed modified Booth 
modulo 2"-1 multipliers can find great applicability in 
Residue Nvmber System applications. 

1. Introduction 
Multipliers are met in almost all modern special and 

general purpose processors. They can be implemented 
either as strictly serial or serial-parallel or all parallel 
[ 11. The advances in VLSI implementation technology, 
as well as the need for higher throughput and shorter 
latencies have made the parallel multipliers the only 
attractive alternative for contemporary integrated 
circuits. In a parallel multiplier all partial products are 
generated in parallel and then added successively until 
the final product is derived. The techniques that have 
been presented for speeding up the multiplication 
process aim towards two main directions : 
1) The reduction of the number of the generated partial 

products. The Modified Booth algorithm [2, 31 
reduces the number of the partial products that need 
to be added to approximately the half. 

2) The speed-up of the summation of the partial 
products. Carry-Save Adder (CSA) arrays, Wallace 
trees [4] and Dadda parallel counters [ 5 ]  are among 
the most commonly used structures. 
However, when the multiplier operands are wide 

enough (for example in floating-point multiplication) 
the above techniques may not be adequate for effective 
reduction of the multiplier's latency. 

For spreading and "hiding" the latency of the 
multiplication over more CPU cycles pipelining is 
commonly used. However, the intrinsic architecture of 
the modified Booth algorithm which is based on 2's 
complement arithmetic is not suitable for pipelined 
implementations [6]. The main reasoning behind this 
claim is the 2's complement nature of the algorithm. 
That is, the generation of the 2's complement of a 
number A requires its inversion and the addition of 1. 
The addition of 1 at each stage may make the time to 
generate the partial products unaffordable. Therefore, a 
common solution often employed when a multioperand 

final stage adder. The resulting architecture however, is 
hard to pipeline without significant area and 
performance penalties. The problem of pipelining a 
Booth multiplier is examined in [6] but focus is mostly 
given on the power - performance ratio. When Wallace 
trees or Dadda counters are used for the addition of the 
partial products, the resulting multiplier can neither be 
easily pipelined nor has a regular layout. 

Motivated by the above, we present a new modified 
Booth architecture for 1's complement arithmetic. Our 
design is based on the following observations : 
0 In 1's complement arithmetic the addition of 1 is not 

1's complement addition can be done as fast as that of 

The proposed 1's complement multipliers have 
completely regular structure and can be pipelined 
straightforwardly. Pipelined versions of the proposed 
1's complement multipliers can be used as a core for 
the multiplication of floating-point numbers. In the vast 
majority of modern computer systems the IEEE 
standard [9] for the representation of floating-point 
numbers is used. Since each mantissa in this 
representation is at least 23 bits wide the execution 
latency of the multiplier will be long even when the 
speed up techniques mentioned earlier are used. 
Therefore, a simple to derive pipelined implementation 
of the proposed 1's complement Booth multipliers can 
be used effectively in this case. 

Modulo arithmetic is used in several applications of 
the computer systems. Modulo 2"-1 multipliers are used 
today in digital signal processors which are based on 
the residue number system (RNS) [lo-121 and 
cryptography [ 13, 141. For modulo multiplication 
various ROM-based solutions using look-up tables 
have been proposed and compared [15]. Modulo 
multipliers which are based on CSA or adder trees have 
been presented in [16]. The only attempt for applying a 
Booth algorithm to modulo 2"-1 multipliers was 
presented in [ 171. 

In this paper we give the formal foundation for 
modified Booth modulo 2"-1 multipliers as well as 
indicative results when these are used in RNS 
arithmetic. In the RNS system multiplication is 
performed in parallel among three channels that usually 
are chosen to perform modulo 2", 2"-1 and 2"+1 
multiplication. In such a system, the proposed 
multipliers are highly applicable. 

required to get the complement of a number and 

2's complement arithmetic [7, 81. 

2. Preliminaries 
In an unsigned representation the n-bit binary vector 

CSA is used, is to pass the addition of these 1s-to the 637 X,.~X,.~ ... xlx0 represents the integer value X = Cxi2' 
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which lies within the range [0, 2"-I]. In a modulo 2"-1 
number system the same vector represents the value 
I X I Zn-1 = I cxi2' I Zn-1 which lies within the range [0, 
2"-21. In the second case, the number zero has two 
representations, namely the all 0 and the all 1 vector. In 
1's complement representation the (n+l)-bit binary 
vector X,,X,.~X,,.~ ... xlxo represents the value X = -xn(2"- 
1) + Cxi2' E [-(2"-I), +(2"-l)], whereas in 2's 
complement representation, the same vector represents 
the value X = -x,2" + Cxi2' E [-2", +(2"-I)]. 

Mulhplicant A . 
Partial Products 
Addition Array 

Final Result 
Forming Adder 

Product P 
Fig. 1. Modified Booth multiplier's block diagram 

Fig. 1 presents a block diagram of any multiplier 
implementing the modified Booth's algorithm. In the 
widely used 2-bit recoding form of the algorithm 
successive triplets of the bits of multiplier B are 
examined and encoded by the Booth encoder block of 
Fig. 1 as an element of the set {-2, -1, 0, + I ,  +2}. The 
encoded information along with the multiplicand A are 
then used for forming the partial products by the Booth 
selector block. These partial products are then reduced 
to two by the Partial Products Addition Array block. 
The Final Result Forming Adder adds the two 
remaining quantities and produces the final result. 

3. 1's complement modified Booth 
multipliers 

For introducing our 1's complement modified 
Booth multipliers we will show that the number of 
partial products in a 1's complement arithmetic 
multiplication can be reduced. To this end we utilize 
the following Lemma (the proofs of the Lemmas are 
given in [IS]): 
Lemma 1. Let A = a, a,,., an.2 ... al %be a signed binary 
number in 1's complement representation. Then : 
MI =a,a,-,a,-, ... a,a,a,a, ... a, 

T 
Consider the signed binary numbers A = anan.lan.2 ... 

a,% and B = bnbn.lbn.2 ... blbo in 1's complement 
representation to be multiplied (a,,, b, denote the sign of 
the corresponding operand). Let A be the multiplicand 
and B the multiplier. The latter can be expressed as : 
B =-b,(2"-1) + bn.12"-' + ... + b22* + b12 +bo= 

= -b,(2"+'-1) + b,2" + b,.12"-' + ... + b22' +bI2 + bo = 
=-b,2"+' + b,2" + b,.12"-' + ... + b12 + bo + b, = 
=-bn2"+I + b,2" + b,.12" - bn.12"-' + bn-22n-2 + ... + 

+ b12 + bo+ b,= 

bn-32n-3 + ... + b12 + b o +  bn=  
= 2"(bn+b,.l-2b,) + 2"-2(b,.2+b,.l-2b,.l) - b,.32"-' + 

+ ... + b12 +bo+ b, = 
- -  - -  ... 
= 2"(bn+b,.l-2b,)+ 2"-2 (bn-2+bn.3-2bn.1)+ ... + 

+ (bo+b,-2bl) 
That is, B = c 2 "  (bZi-' + b,, - 2b,,+,), where b,+l, b.1 = 

b, and (bZ1.,+ b21 - 2b21+1) can be viewed as an element 
of the set {-2, -1,O, +1,+2}. 

According to the above, the product AB can be 
expressed as : AB = A c 2 "  (bzl-, + b,, - 2bzi+, ) = 

= PP, (1) 

where PPI = A221(b21.~+b2,-2b21+I) are the partial 
products which are derived according to Lemma 1 and 
summarized in Table I (x' is used to denote the 
complement of bit x). Relation ( I )  reveals that a 
modified Booth 1's complement multiplier can be 
designed following the block diagram of Fig. 1. 

I 

I 

A 2" (bZl-, + b,, - 2b,,+, ) .That is, AB = 
I I 

1 1  1 11 0 I 1 1 1.. .111 or 000 ... 000 

Area and time efficient implementations of the 
encoder and the selector circuits can be derived when a 
3-bit bus approach is used for their interconnection. 
Figs 2a and 2b present sample implementations. b 2 1 - l y p  b,, ;; ;aD pp, 

a, I 

b , + ,  
Sign Sign 

(a) (b) 

Fig. 2. Encoder (a) and selector (b) blocks. 

The addition of the partial products can be done as 
in the 2's complement multipliers by either a CSA or 
tree structures. Since 1's complement arithmetic is used 
here, every carry-out bit must be fed back as a carry-in 
to the adder array. In the case where the 1's 
complement multiplier is used as a block of a floating- 
point multiplier, a final 1's complement adder with 
single representation of zero [7, 8, 171 must be used. 
We have to note that very efficient 1's complement 
adder designs have been proposed in [7, 81, therefore 
we will not consider this further in this work. 

Fig. 3 presents a 8x8 modified Booth 1's 
complement multiplier with a CSA. The comparison of 
the proposed structure against a 2's complement . .. 

multiplier structure reveals that both require =2"(b,+b,.l-2bn) - b,.12"-' + bn-22"-' + ... + bo+ b,= 
=2"(b,+b,.1-2bn) + (-bn.,2"-' + + bn.32n-2) - 638 



approximately the same area and should offer similar 
execution times. We will present indicative results 
confirming this in Section 5. However, as it is obvious 
from this figure the proposed multiplier has a 
completely regular structure; therefore pipelined 
implementations can be derived easily. For example in 
Fig. 3 if the partial product generation and product 
reduction has a delay close to that of the final adder a 
simple 30-bit register before the 1's complement adder 
can be utilized to spread the overall latency in two 
consecutive shorter cycles. 

HallAdder 0 Selglor 

0 Full Adder 1 Encodel 

Fig. 3. 1's Complement 8 x 8 multiplier. 

4. Modulo 2"-1 Modified Booth multipliers 
For high performance modulo multiplication 

dedicated multipliers are required which can be 
implemented as combinational or pipelined circuits. 

For introducing our modulo 2"-1 modified Booth 
multipliers we will firstly show that the number of 
partial products can be reduced. To this end we utilize 
the following Lemma : 
Lemma 2. Let X = x,xn.~xn.2 .... xlx0 (x, is the sign bit) 
a signed binary number in 1's complement 
representation. Then : 

1x2' 12" -1 = x 1 n-l+i (n-1 )I x I n-2+1 (n-111 I I+ i (n- l jn x I0+1 (n-lj, 

Since the modified Booth multiplication algorithm 
is based on signed binary number representations, for 
applying it to unsigned binary numbers, as for example 
to the two modulo 2"-1 numbers A, B, these should first 
be transformed to positive binary numbers by adding a 
leading zero, that is A = Oan.lan.2 ... al%, B = Obn.lbn.?. ... 
blbo (a,, bn = 0). 

As shown in the previous section, the multiplier B 
can be expressed as : B = [221(b~1.~+b~1-2b~l+~)1, 

where b,+], b.,, b, = 0. The value of the product AB in 
modulo 2"-1 can be expressed as : 

I 

= /21.21i (b2i-l + bZi - 2b2i+l 12"-1~2"-1 = 

PP, = A 2" b2i-l + b,, - 2b2,+1 jZn-, are the partial products 

of the multiplication, which are derived according to 
Lemma 2 and summarized in Table 11. 

I (  

Table 11. Recoded artial roducts 
2i+lb~ib~i-1 Partial Product (PPi) 

000 ... 000 or 1 1 1..  . 1 1 1 

0 0 1 +A2 ' a~ " -~+~ i ( " -~~ , ,a~n-2+~ i (n -~~~  ...alo+2i(n-ljn 

PI Pa P, Pa P1 Pz P> Po 

Half Adder 0 . Selector 

n : Full Adder 1 : Encoder 
U 

Fig. 4. Modified Booth modulo 255 multiplier. 

The above analysis indicates that a modified Booth 
modulo 2"-1 multiplier can be designed following also 
in this case the block diagram of Fig. 1. As a sample we 
present in Fig. 4 the modulo 255 multiplier. 
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5. Results & Discussion 
In this paper we have presented a modified Booth 

1's complement multiplier architecture. We also 
extended our developed theory for the design of 
modulo 2"-1 Booth multipliers. 

The structure of the proposed 1's complement 
modified Booth multipliers resembles that of the 2's 
complement ones but it is also completely regular. We 
expect and we will verify by actual implementations 
that corresponding 1's and 2's complement multipliers 
will offer the same performance and similar 
implementation area. The proposed 1's complement 
multipliers however can be pipelined in a 
straightforward manner, therefore they may be more 
applicable in cases of long operands in which spreading 
the multiplication latency among several cycles is 
imperative, as for example IEEE floating point 
mantissas multiplication. 

For realistic measures the conventional (integer) 
and the proposed 1 's  complement multipliers were 
described in HDL for operand lengths of 4, 8, 16 and 
32 bits. For all the designs a 2-bit recoding scheme and 
a CSA reduction was adopted. All designs were 
mapped to the AMS CUB implementation technology 
(0.6pm, 2-metal layer, 5.0V). During synthesis the 
netlists were optimized for speed and as a secondary 
target the tool was instructed to try to recover as much 
area as possible. Results that completely verify our 
expectations are given in Table 111. All results 
associated with circuit delay were gathered assuming 
worst case process parameters and are measured in ns. 
~ 1 1  area results are in mils2. 

1130,7 10,lO 1180,7 10,03 
3170,5 17,09 3470,5 16,95 

32 12254,4 30,64 12642,3 30,42 

Table 111. Area and Delay results of 2's and the 
proposed 1's complement multipliers 
2's com lement 1's com lement 

Length Area Delay Area Delay i (Bits) 

Operands' 

~ ~ 

8 1130,7 10,lO 1180,7 10,03 
16 3170,5 17,09 3470,5 16,95 
32 12254.4 30.64 12642.3 30.42 

Operands' Length 
(Bits) 

4 1 353,2 1 5,33 1 370,2 I 5,40 I 

Area Delay 

32 

The structure of the proposed modulo 2"-1 
multipliers also resembles that of the modulo 2" 
multipliers. Therefore we expect that the modulo 2"-1 
multipliers will offer similar performance and 
implementation area, making them highly applicable in 
a RNS system. Table IV presents the results that we 

have obtained for modulo 2"-1 multipliers with inputs 
of 4, 8, 16 or 32 bits, following the procedure described 
earlier. 
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