
A Macro Generator for Arithmetic Cores
D. Bakalis1,2, M. Bellos1, H. T. Vergos1,2, D. Nikolos1,2 & G. Alexiou1,2

1Computer Engineering and Informatics Dept., University of Patras, 26 500, Rio, Greece
2Computer Technology Institute, 3, Kolokotroni Str., 26 261 Patras, Greece

e-mail : {bakalis, vergos, nikolosd, alexiou}@cti.gr, bellos@ceid.upatras.gr

Abstract
In this paper we present a tool for macro generation
of soft cores performing arithmetic operations for a
wide variety of operand sizes and architectures. The
tool produces structural Verilog descriptions. Hence,
any commercial synthesis tool can be used to map
the produced designs to a specific technology. The
generator covers all four basic operations: addition,
subtraction, multiplication and division. Therefore,
applications requiring arithmetic cores, as for
example digital signal processing and multimedia
applications, can be completed faster and with less
effort.

1. Introduction
System-on-a-Chip (SoC) design challenges

engineers with a large scale task to integrate and
provide a rich set of features, often with high
performance, while achieving time-to-market goals
on progressively shorter product life cycles. Design
automation has increased productivity and reduced
cycle time, while a reuse strategy has become a
means of amortizing the development effort and
investment across multiple projects [1, 2].

The current trend in hardware design is code
reusability and core-based design. The use of pre-
verified, pre-tested macros leads to reduced time-to-
market through faster design cycles and higher
productivity of the design teams. Moreover this
development approach minimizes risk and enables
cost-effective solutions. In contrast with hard cores,
that are firm design blocks already targeted to a
specific implementation technology, cores that are
provided as a Hardware Description Language
(HDL) description at the RTL level provide the
designer with a greater freedom. They can be
mapped to any ASIC or FGPA implementation
technology by any logic synthesis tool that the
designer is acquainted to. Note that the substitution
of the core with actual RTL synthesizable code is
done during synthesis. For simulation purposes, the
core author also provides the user with a behavioral
model that cuts down the simulation time
significantly.

Arithmetic modules are common to almost every
system design. Coding of algorithms for arithmetic

operations, or of building blocks for such
algorithms, in a technology independent HDL and
proved capability of synthesizing such a description
in a variety of industrial products, offer a system
designer with efficient and versatile building blocks
for developing complex System-on-a-Chip solutions.
Most available synthesis tools offer some kind of
block generators for arithmetic modules. Common
limitation is the lack of a variety of architectures for
all possible implementation technologies.

Several arithmetic module generators have been
presented in the last years. In [3] a module generator
capable of generating complex arithmetic structures
is presented. Rather than using distinct adder or
multiplier modules, this generator combines the
arithmetic expressions that supports into a single
module. The disadvantage of this approach is that
restricts the designer from examining different
alternatives to meet his design goals. [4] presents a
macro-cell generator for floating-point division and
square root operation. A module generator for logic-
emulation applications, which is able to generate
macro cells of arbitrarily complex functions
described in HDL is proposed in [5]. This module
generator accepts Verilog description and produces
partitioned CLB netlists for decomposing the design
into multiple FPGA chips.

In this work we present a tool for macro
generation of cores performing arithmetic
operations. The generator produces a structural
Verilog description of an arithmetic module given
the type of the requested operation and the size of
the operands. Since a completely structural
description is produced, reusability is assured. Our
generator covers all four basic operations: addition,
subtraction, multiplication and division. For each
type of operation it is capable of producing more
than one cores using different algorithms for their
implementation.

Our generator produces each description within a
very small amount of time enabling the designer to
synthesize two or more distinct architectures to a
target technology and then select the one that best
suits his needs. If the same technology and core is
used several times, only one synthesis run is
required, if the results are stored in a core database.

Therefore, the generator can both alleviate the
design effort and help towards the reduction of time
to market.
The remaining of the paper is organized as follows:
In Section 2 we discuss about the requirements that
such a generator must fulfill. In Section 3 we give
details about the implementation of the macro
generator for arithmetic cores. Experimental results
obtained by our generator are presented in Section 4.
Section 5 describes how the design of a floating-
point multiplier unit was simplified by the use of our
generator.

2. Requirements and Specifications
In order to be generic and easy-to-use, a tool for

macro generation of arithmetic cores has to confront
to the most of the following requirements:

������� �	��

��

� ��� �
�
� �
�
��� � � ����
�� � �����
�
��

����

� �
�����
��� �

� � ��
	���
�
��

� ��� � �
�

���
�
"!#
�� ��� � � � � �
�	� �
�$� � %�� � %�� �
& '�

� � & ��(

) ��(
� ���$� � � ��
���� � ��� �	%�& ��� � �
�

�$
�� � * +�

������� �
�
,
%���� � � �
���
& '�

� � � � � ��� � �
�

���
�

!#����%���

� � ��� � �
�

Fig. 1. A block diagram of the macro generator for
arithmetic cores

• Technology Independence: It should not
restrict to specific gates or technology libraries.
Rather it must provide the core description in a more
abstract level (eg. in HDL).

• Easy Integration: the designer must be able
to integrate, without difficulty, the modules
generated by the tool with the rest of his design.

• Many Alternatives: the tool must be able to
produce cores for all four basic operations (addition,
subtraction, multiplication and division). For each
type of operation it has to give the designer the
opportunity to select, between several different
architectures performing a specific operation, the
one that best suits his needs in terms of circuit area,
delay, power and testability. Moreover all these
alternatives should be available independently of the
targeted technology.

• No restrictions on the operand size: The
arithmetic macro generator must have the smallest

possible limitations about the operands size of the
cores that can produce.

• Applicability: The generator must be able to
produce, at least, the most frequently used arithmetic
modules.

• Easy-to-Use: The tool has to provide the
designer with a simple and easy-to-use interface.

• Expandability: It has to be implemented
with an open interface that ensures that the addition
of new capabilities or architectures for arithmetic
operations is straightforward.

Having all these requirements in mind, we have
made the following decisions regarding the
implementation of the arithmetic macro generator.

In order for the core to be technology
independent, the macro generator produces its
description in structural Verilog language. Note that
this gives the ability to the designer to easily
integrate a module with the rest of a design and map
it to a specific technology library through the use of
any commercially available logic synthesis tool.
Moreover it does not disturb the requirement for a
behavioral simulation model. The requested core,
that the tool generates, will be described as a
interconnection of basic cells (eg. full adders, half
adders, controlled adder/subtracters). For this reason
the designer has the ability to define his own gate-
level implementations of the basic cells even if he
has no knowledge of the algorithm implementing the
arithmetic operation.

Furthermore, the tool is able to produce several
different modules for each of the four basic
arithmetic operations (addition, subtraction,
multiplication and division). For example the tool
can implement both ripple-carry and carry look-
ahead adders, both Baugh-Wooley and Booth-
recoded multipliers etc. This feature provides the
designer with a volume of design alternatives for a
specific type of arithmetic operation and the ability
to choose the one that best meets his needs regarding
area, delay, power and testability.

Finally, we decided to implement the macro
generator as a software tool with both a command-
line and a simple menu-driven user interface so as to
help the designer interact with it and make upgrades
and improvements an easy task.

The block diagram of the macro generator is
given in Figure 1. Once the designer defines the type
of the operation and the size of the operands, the tool
produces the requested core described in structural
Verilog and the core documentation. Then the core
can either be combined with the rest of a design and
mapped to a specific technology with a logic
synthesis tool or can be simulated for functional
verification using a test-bench module that is
produced by the generator together with the core.

3. The Macro Generator for Arithmetic
Cores

This section consists of two subsections. In the
first one we present the types of cores that the macro
generator can produce and the algorithms that are
used for this purpose. In the second one we discuss
several implementation issues.

3.1 Implemented Algorithms for arithmetic
operations

We now present the types of cores that the
generator can produce. Subtraction is usuall y
combined with addition and therefore we consider
these two types of arithmetic cores as one.

In the case of adder/subtracter cores the generator
can produce:
(a) adders/subtracters based on Ripple-Carry

propagation (RCAS) composed of full adders,
(b) group Carry Look-Ahead adders/subtracters

(GCLAS) composed of 4-bit Carry Look-Ahead
units and ripple carry propagation between
groups,

(c) Carry Look-Ahead adders (MLCLA) with
multiple levels of Carry Look-Ahead generation
logic [6],

(d) Sklansky parallel-prefix adders (SKA) [7], and
(e) Kogge-Stone parallel-prefix adders (KSA) [8].

In the case of parallel multiplier cores we
distinguish the case of unsigned operands and the
case of operands in 2's complement arithmetic. In
the former case, the macro generator can produce:

(a) Carry-Propagate Array Multipliers (CPAM)
composed of a series of ripple-carry adders for
adding the partial products and

(b) Carry Save Array Multipliers (CSAM) [6]
that use carry-save adders to sum the partial product
bits and a ripple-carry adder to produce the final

product.
In the case of 2's complement multipliers, the

macro generator can produce cores implementing:
(a) the TriSection Pezaris algorithm (TPAM) [9]

consisting of 3 different "adder" basic cells,
(b) the Baugh-Wooley algorithm (BWAM) [10],

and
(c) multiplier cores based on 2-bit Booth

recoding (MBM) [11]. In this case, carry-save
adders are used to sum the partial products and an
adder is used to produce the final product.

Furthermore, in the case of serial-parallel
multipliers the macro generator can produce serial-
parallel multiplier cores [12] for 2's complement
numbers.

In the case of dividers, the generator can produce:
(a) Non-Restoring Cellular Array Dividers

(NRCAD) composed of 1-bit controlled
adders/subtracters and

(b) Restoring Cellular Array Dividers (RCAD)
composed of 1-bit controlled subtracters [6].

3.2 Macro Generator Implementation Issues
The tool for macro generation of arithmetic cores

has been implemented using ANSI C programming
language. This language was chosen because it is
widely used and is supported by many different
operating systems.

The implementation of the above algorithms for
arithmetic operations imposes some restrictions on
the size of the operands that can be handled. For
example, since we use 2-bit recoding for Booth
multipliers, the operand size must be a multiple of 2.
Furthermore, in the current version of the tool, we
support only modules with equal sized operands (in
the case of dividers the size of the one operand is
twice the size of the other operand).

Table 1. Modules and operand sizes

Minimum size Step Maximum Size
Adder/Subtracter Modules

Ripple Carry Adder/Subtracter 2 1 1024

Group Carry Look-Ahead Adder/Subtracter 4 4 1024

Multi -Level Carry Look-Ahead Adder 4 4 256

Sklansky Parallel-Prefix Adder 2 1 1024

Kogge-Stone Parallel-Prefix Adder 2 1 1024

Multiplier Modules

Carry Propagate Array Multiplier 2 1 256

Carry Save Array Multiplier 2 1 256

TriSection Pezaris Array Multiplier 2 1 256

Baugh-Wooley Array Multiplier 2 1 256

Modified Booth Multiplier 2 2 256

Serial-Parallel Multiplier 2 1 256

Divider Modules

Restoring Cellular Array Dividers 8 power of 2 64

Non-Restoring Cellular Array Dividers 8 power of 2 64

The supported modules and operand sizes are
shown in Table 1. The second column indicates the
smallest operand size supported while the fourth
column indicates the largest operand size supported.
The third column indicates the step between two
supported operand sizes. For example, in the case of
multi-level carry look-ahead adders, the tool can
produce all cores with operand size a multiple of 4,
e.g. 4, 8, 12, 16, ... , 256.

The output of the macro generator is the
structural Verilog description of the requested
arithmetic core. This description consists of 4
distinct parts:

• a core information part. This part provides
information about the type of the arithmetic module
as well as its primary inputs and outputs,

• the basic cell definition part which consists
of the description of the basic cells that are required
to create the requested core, e.g. half adders, full
adders, 1-bit controlled adders/subtracters, etc,

• the core description part which is the
structural description of the interconnections of the
basic cells to create the requested core, and

• a test-bench for functional verification. This
module can provide input vectors to the arithmetic
core giving the designer the ability to check its
correct functionality by a logic simulation tool.

The macro generator is designed as a software
tool with both a command-line and a menu-driven
user interface. Figure 2 shows the menu-driven user
interface.

4. Experimental Results
The macro generator that was presented in the

previous section can be used in many design
applications. Since it provides a library with general-
purpose arithmetic cores, it leads to rapid system

prototyping. The descriptions of the modules in
structural Verilog offer the ability to the designer to
quickly and easily integrate these modules with his
design and proceed to logic synthesis. He also has
the ability to decide, among several alternatives, the
one that is suitable for the specific design that he is
interested in, regarding area, delay, power and
testability.

We have used the macro generator to create
several arithmetic cores. The test-bench that
accompanies each core was used to verify the
correct operation of it. For example, in Figure 3 we
show some results of simulating a 14-bit Baugh-
Wooley multiplier.

Furthermore, because of the structural
description, the cores that the macro generator
produces can be synthesized with any commercial
logic synthesis tool. We have performed logic
synthesis on several arithmetic cores produced by
the macro generator. We have used two commercial
logic synthesis tools: (a) Leonardo Spectrum by
Mentor Graphics with its sample ASIC XCL05U
library and (b) Design Analyzer by Synopsys driven
by the AMS CUB library. Table 2 presents the
results of the logic synthesis in terms of area and
delay. Note that the two logic synthesis tools
produce their area estimation results using two
different metrics, namely square mils and equivalent
gates. This is because the Synopsys tools also
include a routing area estimate in their results.

The time the generator needs to produce the
requested cores is very small. The descriptions of the
arithmetic cores presented in Table 2 were produced
in less than one second. The time needed to
synthesize a core depends on the hardware platform
and the specific logic synthesis tool that is used as
well as the size of the core. The logic synthesis

(N) -> Define Circuit Name
(X) -> Define Circuit Size

Adders/Subtracters
 (R) -> Create Ripple Carry Adder/Subtracter
 (G) -> Create Group Carry Look-Ahead Adder/Subtracter
 (C) -> Create Multi-Level Carry Look-Ahead Adder
 (Y) -> Create Sklansky Parallel Prefix Adder
 (K) -> Create Kogge-Stone Parallel Prefix Adder
Multipliers
 (P) -> Create Carry Propagate Array Multiplier
 (S) -> Create Carry Save Array Multiplier
 (M) -> Create Trisection Pezaris Array Multiplier
 (U) -> Create Baugh-Wooley Array Multiplier
 (B) -> Create Modified Booth Multiplier
 (L) -> Create Serial-Parallel Multiplier
Dividers
 (D) -> Create Non-Restoring Cellular Array Divider
 (A) -> Create Restoring Cellular Array Divider

(E) -> Exit

Choice :

Fig. 2. The menu-driven user interface of the generator

Fig. 3. Simulating a 14-bit Baugh-Wooley multiplier core using ModelSim by Mentor Graphics

process, using Leonardo Spectrum, of the largest
core of Table 2 (14-bit Baugh-Wooley multiplier)
completed in less than 35 seconds on a system with
one Intel Pentium-III 500MHz processor, 128MBs
of main memory and 100MHz system bus speed.
The time needed to synthesize the other cores of
Table 2 was less than 30 seconds. Note that
synthesis needs to be performed only once for a
specific core and implementation technology.
Synthesis results can be stored in a database,
allowing then the designer to have immediate access
to all possible forms of a given arithmetic core in
order to make the choice that best suits his needs
very early in the design cycle.

5. An application example: A floating-
point multiplier

The described generator for arithmetic cores was
used for the design of a floating-point, double
precision, IEEE standard, multiplier [13]. The
multiplier's functionali ty was described in behavioral
HDL and simulated against a software model.

Several design alternatives had to be examined to
reach an implementation that balances area and
performance requirements. The floating-point
multiplier design makes use of three arithmetic
cores:

• an 53-bit unsigned multiplier for the
mantissas.

• two 11-bit integer adders/subtracters for the
exponents. The first one is used to subtract the bias
from the first exponent whereas the second adds the
second exponent.

• an 53-bit incrementer for the rounding
procedure.

The maximum delay of the floating-point
multiplier depends on the delay of the unsigned
multiplier for the mantissas. To this end, several
implementations of this fixed-point multiplier have
been taken into account. Table 3 presents attained
performance and area results when alternative
architectures, provided by our generator, were used
for the mantissas multiplication. We have used
Group Carry Look-Ahead cores for the 11-bit
adder/subtracters and the 53-bit incrementer. The
Leonardo Spectrum synthesis tool with the sample
ASIC XCL05U library was used to obtain the
results.

Due to the availabili ty of the presented macro
generator, the design and evaluation of alternative
designs for floating-point multiplication was taken
place in minimum time and design effort.

Table 2. Synthesized arithmetic cores with Synopsys and Mentor Graphics tools

Synopsys Tools
(AMS CUB)

Mentor Graphics Tools
(sample XCL05U)

Area (sq. mils) Delay (ns) Area (eq. gates) Delay (ns)
32-bit Ripple Carry Adder/Subtracter 295 16,3 857 16,4
32-bit Multi -Level Carry Look-Ahead Adder 272 15,1 619 14,2
14-bit Carry Propagate Multiplier 1574 34,5 4590 33,3
14-bit Carry Save Multiplier 1579 24,3 4621 22,6
14-bit Baugh-Wooley Multiplier 1531 26,1 4632 29,0
14-bit Booth-recoded Multiplier 1341 19,1 4303 16,9
14-bit TriSection Pezaris Multiplier 1653 28,1 4432 29,9
16/8-bit Restoring Array Divider 640 78,7 1461 42,6
16/8-bit Non-Restoring Array Divider 556 50,3 1159 39,6

Table 3. Floating Point Multiplier's Area and Delay results for 3 different unsigned multiplier architectures

Floating Point MultiplierUnsigned Multiplier
Architecture Area (eq . gates) Delay (ns)

54-bit Baugh-Wooley 399 927 175,8
53-bit Carry Save Array 394 650 169,2
54-bit Booth Recoded 402 969 107,9

6. Conclusion
We have presented a tool for macro generation of

cores performing arithmetic operations. Given the
type of the arithmetic operation and the size of the
operands, the tool produces the requested module in
structural Verilog. The generator covers all four
basic operations: addition, subtraction, multipli-
cation and division and is capable of producing more
than one different architectures for any type of
operation. The use of the tool gives the abili ty to the
designer to select, in the smallest possible time,
between alternative designs the one that best meets
his design goals. The use of the presented generator
minimizes the design effort and reduces time-to-
market.

We are currently extending the generator for
producing more complex cores (for example, digital
filters) as well as for producing its descriptions in
VHDL along with the currently supported Verilog
language.

References
[1] M. Keating & P. Bricaud, Reuse Methodology

Manual for System-On-A-Chip Designs, Kluwer
Academic Publishers, 1998.

[2] G. Dare, D. Linzmeier & B. Deitrich, "Circuit
Generation for Creating Architecture-Based
Virtual Components", Proc. of Design
Automation and Test in Europe (User Forum),
pp. 79-83, 2000.

[3] D. Kumar & B. Erickson, "ASOP: Arithmetic
Sum-of-Products Generator", Proc. of
International Conference on Computer Design,
pp. 522-526, 1994.

[4] M. Aberbour, A. Houelle, H. Mahrez, N.
Vaucher & A. Guyot, "On Portable Macrocell
FPU Generators for Division and Square Root

Operators Complying to the Full IEEE-754
Standard", IEEE Transactions on VLSI Systems,
Vol. 6, No. 1, pp. 114-121, March 1998.

[5] W. Fang, A. Wu & D. Chen, "EmGen - A
Module Generator for Logic Emulation
Applications", IEEE Transactions on VLSI
Systems, Vol. 7, No. 4, pp. 488-492, December
1999.

[6] K. Hwang, Computer Arithmetic Principles,
Architecture and Design, John Wiley & Sons,
1979.

[7] J. Sklansky, "Conditional Sum Addition Logic",
IRE Transactions on Electronic Computers, EC-9
(6) pp. 226-231, June 1960.

[8] P. Kogge & H. Stone, "A Parallel Algorithm for
the Efficient Solution of a General Class of
Recurrence Equations", IEEE Transactions on
Computers, Vol. 22 (8), pp.783-791, August
1973.

[9] D. Pezaris, "A 40ns 17-bit by 17-bit Array
Multiplier", IEEE Transactions on Computers,
Vol. C-20, No. 4, pp. 442-447, April 1971.

[10] R. Baugh, A. Wooley, "A Two's Complement
Parallel Array Multiplication Algorithm", IEEE
Transactions on Computers, Vol. C-22, No. 1-2,
pp.1045-1047, December 1973

[11] M. Annaratone, Digital CMOS Circuit Design,
Kluwer Academic Publishers, 1986

[12] G. Alexiou & N. Kanopoulos, "A New
Serial/Parallel Two's Complement Multiplier for
VLSI Digital Signal Processing", International
Journal of Circuit Theory & Applications, Vol.
20, pp. 209-214, 1992

[13] ANSI/IEEE, "IEEE standard for binary
floating-point arithmetic", ANSI/IEEE Trans.
Std. 754-1985.

