
Easily Path Delay Fault Testable Non – Restoring Cellular Array Dividers

G. Sidiropoulos1,2, H. T. Vergos1,2 & D. Nikolos1,2

1Dept. of Computer Engineering and Informatics,University of Patras, 26 500, Patras, Greece
2Computer Technology Institute,3, Kolokotroni St., 262 21 Patras, Greece

E-mail : sidiro@ceid.upatras.gr, {vergos, nikolosd}@ cti.gr

Abstract
Testing of NxN Non-Restoring Cellular Array Dividers
(NRCAD) with respect to path delay faults, is studied in
this paper. Design modifications are proposed and a path
selection method is suggested. We prove that the selected
paths are Single Path Propagating Hazard Free Robustly
Testable (SPP-HFRT) and that by measuring their delays
the delay along any other path of the divider can be easily
calculated. The number of selected paths is impressively
small compared to all paths of the divider. The delay
overhead of the modified design for all values of N is
negligible, while the hardware overhead is small too. This
is the first easily testable, with respect to path delay
faults, NRCAD design in the open literature.

1. Introduction

The speed at which a circuit can operate is determined
by the maximum delay along any path. As chip
manufacturing process becomes more sophisticated, the
major failure being experienced shifts from stuck fault to
delay type [1]. Imprecise delay modeling, the statistical
variations of the parameters during the manufacturing
process as well as the occurrence of physical defects in the
integrated circuits result in chip malfunction at the desired
speed. Gross delay faults [2], model delay defects that
affect single lines in the circuit, causing the propagation
delay through them to be "very large". The gate delay
fault model [3] also addresses defects affecting single
lines, however, no assumption is made on the delay size.
The path delay fault model [4] addresses distributed or
accumulated delays due to the propagation through
several lines, each affected by a delay defect. Two major
problems are associated with path delay fault testing : a)
an excessively large number of physical paths needs to be
tested. Usually it is not affordable to test all of them and
b) because the single fault assumption is not realistic for
the path delay fault model (a single defect usually will
affect a large number of paths), a robust test is usually
required for detecting a path delay fault. However, for
many circuits, a large number of path delay faults can not

be robustly tested.
A variety of path selection methods have been

proposed [6-12] to alleviate problem a) above. The
simplest delay-based approach is to select all paths whose
calculated delay exceeds a specific threshold. However,
the number of paths selected by this method is so large in
general that all the selected paths cannot be tested,
especially in the case of optimized circuits [5]. The
method given in [7] selects a set of paths such that for
each interconnect l of a given circuit the set contains at
least one path with the largest calculated delay among the
paths through l. The number of the paths selected by this
method is moderate. The method, recently proposed in
[8], reduces the number of paths to be tested by judging
which of two paths has the larger real delay. A common
drawback of the above mentioned methods [7, 8] is that
the selected paths may not be robustly testable.

A number of functional approaches has also been
proposed [9-12]. In those, path selection is achieved by
excluding paths that do not have to be tested functionally,
such as unsensitizable paths, robust-dependent paths etc.
However, these approaches are not practical for large
circuits because both computation time and the number of
the selected paths are quite large.

It has been shown in [6] that by measuring the delays
along a suitable very small set R of physical paths the
propagation delays along any other path can be calculated
(we will hereafter call such a set of paths a basis).
However, to be able to measure the propagation delay
along the R paths they must be SPP-HFRT [6].
Unfortunately for most circuits, a basis consisting of SPP-
HFRT paths does not exist.

Almost all contemporary general and special purpose
processors include a high speed divider circuit. Array
divider architectures feature regularity, short execution
time and small area; thus they are suitable for VLSI
implementations [13]. Testing them for path delay faults is
a very difficult task due to: a) their excessively large
number of physical paths and b) the fact that all path delay
faults can not be robustly tested. In this paper, we focus
on N x N NRCADs, originally introduced in [14]. The
methods given in [7, 8] can not be applied in the case of a



NRCAD, because many of the longer paths are neither
robustly testable nor non-robustly validatable. Also, a
basis R, according to [6], consisting of SPP-HFRT paths
does not exist for a NRCAD.

In this paper, we propose modifications of the original
NRCAD design that enable us to present a method for
deriving a basis R' consisting only of SPP-HFRT paths.
The number of paths that R' includes is an impressively
small percentage of all physical paths of the original
design. However due to the prohibitively large number of
paths in an NRCAD it is impossible to calculate the delay
along all paths in order to derive the maximum delay. This
problem can be overcome using the method proposed in
[8] to determine a relatively small number of paths T the
propagation delay along which must be calculated in order
the maximum path delay of the circuit under test to be
derived.

It has been shown in [17] that the fact that the circuit
functions correctly at a clock speed does not imply that it
will also function correctly at any lower clock speed.
Therefore, calculating the propagation delays along the
paths of T we derive the maximum clock speed under
which the NRCAD will operate correctly but we can not
be sure that the NRCAD will operate correctly under a
lower clock speed. It has been shown in [17] that if we
can test all primitive path delay faults of a circuit at a
clock speed and under test application no delay fault is
detected then the circuit functions correctly at any lower
speed. We will show that calculating the propagation
delay along all paths included in primitive faults we derive
the maximum delay of the circuit (as well as the maximum
clock speed), and the circuit functions correctly for all
lower clock speeds. Therefore we show that the proposed
NRCAD is delay-verifiable.

We consider the inputs and outputs of the divider as
primary inputs (PIs) and primary outputs (POs) of the
chip. In the case that the divider is embedded in a circuit,
its inputs and outputs can easily be made accessible by the
PIs and the POs of the chip using, for example, the
method proposed in [15].

2. Delay-verifiable circuits

It has been shown in [17] that the fact that a circuit
functions correctly at a clock speed does not imply that it
will also function correctly at any lower clock speed. A set
of path delay tests is called a strong delay-verification test
set if the correct response of the CUT at a speed implies
correct operation at any lower speed [17]. A circuit which
has a strong delay-verification test set is called a delay-
verifiable circuit [17].

Figure 1 [17] shows a circuit which does not have a

strong delay-verification test set. All faults except dfb↑ ,

dfb↓ , efb↑ and efb↓ are testable by robust tests. In this

case, even the exhaustive set consisting of all the vector
pairs is not a strong delay verification test set. The signal
values in the circuit for the two tests <101,111> and
<111,101> are shown in Figures 1.a and 1.b, respectively.
If there are no path delay faults, any output pulse that may
occur will occur before the sampling time t2. Faults on the

paths from b and b  may result in an output pulse
occurring later. Such faults may or may not be detected at
time t2. Therefore, the correct response for these two tests
only guarantees that the circuit will operate correctly if the
clock period is the test clock period 2� but the delayed
pulse due to the path delay fault may cause incorrect
operation at a lower clock speed.

D

E
F

D

E
F

�

�

�

�

W
�

W
�
� /

W
� D

E
F

D

E
F

�

�

�

�

W
�

W
�
� /

W
�

I
I

G G

HH
W
�

W
�

Figure 1.a. Figure 1.b.
Although the circuit of Figure 1 does not have a strong-

delay verification test set, we will show that the circuit is
delay-verifiable. The propagation delay along the paths

ad, adf, ae, aef, db  and be which are SPP-HFRT [16] can
be measured applying the test vector pairs <001,101>,
<001,101>, <011,111>, <011,111>, <101,111> and
<101,111> respectively. The propagation delay, pd, along

the paths bdf and bef can be calculated by: pd(dfb↑ ) =

pd( db↑ ) + pd( adf)↑  - pd( ad)↑ , pd( dfb↓ ) =

pd( db↓ ) + pd( adf)↓  - pd( ad)↓ , pd( bef↑ ) = pd( be↑ )

+ pd( aef)↑  - pd( ae)↑  and pd( bef↓ ) = pd( be↓ ) +

pd( aef)↓  - pd( ae)↓ .

For the output waveforms of figures 1.a and 1.b we get

pd( dfb↑ )=t4, pd( dfb↓ )=t3, pd( bef↑ )=t4, pd( bef↓ )=
t3, therefore the maximum delay of the circuit is equal to t4

and for all lower speeds the circuit will function correctly.
From the above discussion it becomes evident that for a
circuit having a basis consisting only of SPP-HFRT paths
we can calculate the delay along all paths or along the
paths included in primitive faults [18] and the calculated
maximum propagation delay implies that the circuit will
function correctly for any lower clock speed; therefore is
delay verifiable.

3. NRCAD Design Modifications

An N x N NRCAD is a combinational circuit with
inputs the nominator (n1, n2, ... n2N-1) and the denominator
(d1, d2, ... dN) and outputs the quotient (q1, q2, ... qN) and
the remainder (rN, rN+2, ... r2N-1). Figure 2 presents the 8x8
NRCAD (ignore the multiplexers at the bottom of Figure



Q� Q� Q� Q� Q�Q� Q� Q�G� G� G� G� G� G� G� G�

Q��

Q��

Q�

Q��

Q��

Q��

Q��

T�

T�

T�

T�

T�

T�

T�

T�

7�

U� U� U�� U��U��U��U��U��

08;�08;�08;�08;�08;�08;�

7�

5
�

5
��

5
��

5
��

5
��

5
��

5
��

5
�

5
�

5
�

5
�

5
�

5
�

5
�

Figure 2. 8 x 8 NRCAD.
2). The dashed lines indicate propagation of the signals to
the next cell in either horizontal or diagonal direction. The
NRCAD is formed as a two dimensional matrix of
identical logic cells. Each cell is denoted as cell(x, y),
with x indicating the row and y the column that the cell
belongs. The implementation of each cell of the divider
considered in this paper is presented in Figure 3.a and
requires 19 gates, without considering the dashed gate.
Since the first row cells have their P input driven by
logical 1, they can be implemented by 15 gates. Since the
leftmost cell of each row, except the last, does not
produce an S output it can be implemented by 9 gates as
shown in figure 3.b. The upper and leftmost cell can be
implemented by 5 gates. Since the rightmost cell of each
row, except the first, has connected P and Ci inputs, it can
be implemented by 9 gates as shown in Figure 3.c, without
considering the dashed gate. The upper and rightmost cell
requires only 8 gates. Summarizing the above, we can
express the total area of the divider in gates as Atotal =
19*[(N-1)*(N-2)+1]+15*(N-2)+9*(N-2)+5+9*(N-1)+8.

In the sequel we propose several design modifications
for making the NRCAD design easily testable. Excluding
the leftmost cells of all rows and the cells of last row, we
augment every other cell with an extra AND gate (the
dashed AND gate of figures 3.a, 3.c). An extra test input
T0 is used to drive the second input of the added AND
gate for all cells. T0 is only used during testing. During
normal circuit operation T0 is driven to 1. The hardware
overhead of the addition of the AND gate in terms of gate
equivalents is (N-1)2/Atotal. The above relation, for N =  8,
16 and 32 leads to a hardware overhead of  4.7, 5.0 and
5.14% respectively. The critical path of the design is from
a primary input of the upper and rightmost CAS cell,
through the carry chains of each of the N levels of the
NRCAD. The chains of two adjacent levels are connected
together through the Ci+1 output of the leftmost cell which
is connected to P input of the rightmost cell of next row.
The AND gates that we have added do not add any delay
on this critical path and all the rest paths that include any
sub-path along an added AND gate have smaller
propagation delay times than this critical path.

 

%
L

$
L

3

&
L

&
L��

6
L

%
L

%
L

$
L

3

&
L

&
L�� %

L

6
L

%
L
$

L

3
&

L��

6
L

F� ULJKWPRVW FHOO

E� OHIWPRVW FHOOD� EDVLF FHOO

7
�

7
�

Figure 3. Building blocks of the NRCAD
For providing observability of the S output of the next

to the leftmost cell of each row, excluding the first and
last rows, we include N-2 2->1 multiplexers to the
NRCAD design. All these multiplexers are controlled by
the same test input T1 and connected as shown in Figure 2.
T1 during normal operation is driven to 1 and the
remainder bits are observable at the primary outputs,
whereas during testing of specific paths is driven to 0 and
the S outputs of the next to the leftmost cells become
observable at the remainder outputs of the divider. The
output of the multiplexer which drives the ri+N primary
output is denoted as Oi+N. Since the hardware
implementation of the multiplexer requires 4 gate
equivalents, the hardware overhead due to multiplexer
insertion is: 4*(N-2)/Atotal. This relation, for N = 8, 16 and
32 leads to a hardware overhead of 2.3, 1.4 and 0,64 %
respectively. Our simulations showed that the insertion of
the multiplexers does not cause any delay overhead.

For providing controllability of the P input for the cells
of the first row, we drive all these inputs by a third test
input T2. T2 is set to 1 for normal circuit operation and is
occasionally driven to 0 during testing. The hardware
overhead of this change is equal to 4 gates per cell of the
first row. Thus the hardware overhead is (4*N)/Atotal or
equivalently 3.0, 1.4 and 0.68 % respectively for N= 8, 16
and 32. This change may increase the critical path of the
design by a time equal to the difference of the worst
propagation delays between an XOR gate and an inverter,
which is overall a negligible delay.

Summarizing the above analysis the proposed
modifications induce a small hardware overhead, which
for N = 8, 16 and 32 is respectively equal to 10%, 7.8%
and 6.5% in terms of gates. Three extra test inputs are
required. The delay overhead is negligible.

4. Basis Derivation of the Modified NRCAD

In this section we present a path selection among the
paths of the modified NRCAD.



Table 1. Subpaths along each cell.
From To Other Input Signal Values Notation From To Other Input Signal Values Notation

A S P=0, B=1, C=1 / P=1, B=0, C=1 a P S B=0, A=0, C=1 f
A S P=0, B=1, C=0 / P=1, B=0, C=0 b P S B=0, A=1, C=0 g

A S P=0, B=0, C=1 / P=1, B=1, C=1 c P S B=0, A=1, C=1 h
A S P=0, B=0, C=0 / P=1, B=1, C=0 d P S B=1, A=0, C=0 i
A S B=0 aR P S B=1, A=0, C=1 j

A S B=1 bR P S B=1, A=1, C=0 k
B S P=0, A=0, C=0 e P S B=1, A=1, C=1 l
B S P=0, A=0, C=1 f A C P=0, B=1, C=0 / P=1, B=0, C=0 o
B S P=0, A=1, C=0 g A C P=0, B=0, C=1 / P=1, B=1, C=1 p
B S P=0, A=1, C=1 h A C B=1, P=0 / B=1, P=1 oR

B S P=1, A=0, C=0 i B C P=0, A=0, C=1 / P=0, A=1, C=0 q
B S P=1, A=0, C=1 j B C P=1, A=0, C=1 / P=1, A=1, C=0 r
B S P=1, A=1, C=0 k B C P=0, A=1 qR

B S P=1, A=1, C=1 l B C P=1, A=0 rR

B S A=0 eR C C P=0, B=1, A=0 / P=1, B=0, A=0 o
B S A=1 fR C C P=0, B=0, A=1 / P=1, B=1, A=1 p

C S P=0, B=0, A=0 / P=0, B=1, A=1 /
P=1, B=0, A=1 / P=1, B=1, A=0

m P C B=0, A=0, C=1 / B=0, A=1, C=0 q

C S P=0, B=0, A=1 / P=0, B=1, A=0 /
P=1, B=0, A=0 / P=1, B=1, A=1

n P C B=1, A=0, C=1 / B=1, A=1, C=0 r

P S B=0, A=0, C=0 e P C A=0, B=0 / A=1, B=0 qR

Table 2. Calculation procedure for each cell subpaths.
Path Calculation Path Calculation Path Calculation

c b + d – a j i + a – b i j  + i – j

f e + a – b k l + b – a k j  + k – j

g e + l – i f e  + f – e l j  + l – j

h g + b – a g e  + g – e q e + q – e

I j + b – a h e  + h – e r j  + r – j

Table I lists the physical subpaths along a cell with
their notation. The index R is used for paths of the
rightmost cells. Considering a single cell, there is no need
to measure the propagation delays along all these
subpaths, since the propagation delays for c, f, g, h, i, j, k,

f , g , h , j , k , l , q  and r  subpaths can be calculated,

if the propagation delay of the rest subpaths is known.
Table II lists the expressions for computing the delay
along these subpaths. For example, as Table II indicates,
the propagation delay pd along the c subpath can be
calculated by : pd(c)=pd(b)+pd(d)– pd(a).

For the clarity of the analysis, we group the physical
subpaths of any cell in sets and we define the following
variables: s∈{a, b, c, d}, sR∈{aR, bR}, t∈{e, f, g, h, j, i, k,

l}, t R∈{eR, fR}, u∈{m, n}, v∈{ e , f , g , h , i , j , k , l },

w∈{o, p}, wR = oR, x∈{q, r}, x R∈{qR, rR}, y∈{ o , p },

z∈( q , r } and zR= q R.

Definition 1 : A path is denoted as a tuple, (a, b, c) where
a is the primary input, b describes the cells sequence
which the path traverses and c is the primary output.
Definition 2 : The length of a path is the number of cells
that the path traverses. We will denote the length of a path
p as p.

We will examine fourteen cases. In each case, the paths
selected along with some belonging to previous cases
constitute a basis for the whole set of paths of the case
[19] :
Case A. Let PA be the set of paths that have the form: ni →
S(1,i)→ S(2,i) →…→ S(i-1,i) → Oi+N ≡ ri+N, 1<i<N. By
definition 1 these paths can be described as (ni, M, mux1,
ri+N). We select the following sets of paths :
• PA1 is the set of paths (ni, L, mux1, ri+N) where L
consists only of a-type subpaths.
• PA2 is the set of paths (ni, L1, s', L2, mux1, ri+N), where
L1 and L2 consist only of a-type subpaths, and s'∈ {b, d},
L1+L2=i-2, 0≤L1≤i-2.
Case B. Let PB be the set of paths that have the form: ni

→S(i-N+1,i)→S(i-N+2,i)→…→S(N,i)→Oi≡ri, i≥N. Note
that for i={N,N+1} there is no subpath along the output
multiplexer (denoted by the italic font). These paths can
be described as (ni, sR, M, mux2, ri). mux2 denotes a
subpath along the multiplexers with T1 = 1. We select the
following sets of paths :



• PB1 is the set of paths (ni, sR, L, mux2, ri).
• PB2 is the set of paths (ni , aR, L1, s', L2, mux2, ri),
L1+L2=2(n-1)-i, 0≤L1≤2(n-1)-i.
Case C. Let PC be the set of paths that have the form :
ni→S(1,i)→S(2,i)→...→S(k,i)→C(k+1,i)→S(k+1,i-1)→
S(k+2,i-1)→…→S(i-2,i-1)→Oi+N-1≡ri+N-1, 3≤i≤N-1. These
paths can be described as (ni , M1, w, u, M2, mux1, ri+N-1).
We select the following set of paths :
• PC1  is the set of paths (ni, M1,w'u, w', u, M2,w'u, mux1,
ri+N-1) where (w',u)∈{(o,m), (p,m), (p,n)} and M1,w'u, M2,w'u

consist only of d type sub paths if (w',u)=(o,m), and only
of a type sub paths if (w',u)=(p,m) or (w',u)= (p,n),
M1,w'u+ M2,w'u= i-3, 0≤M1,w'u≤i-3.
Case D. Let PD be the set of paths that have the form:
ni→S(1,i)→S(2,i)→...→S(i-1,i)→C(i,i)≡qi, 1≤i≤N. These
paths can be described as (ni, sR, M, w, qi). The subpath sR

exists only when i=N, so the italic font is used. We select
the following set of paths :
• PD1  is the set of paths (ni, aR, L, w, qi) where L= i-1.
Case E. Let PE be the set of paths that have the form:
ni→S(i-N,i)→S(i-N+1,i)→...→S(i-N+k,i)→C(i-N+k+1,i)
→S(i-N+k+1,i-1)→…→S(N,i-1)→Oi-1≡ri-1, i≥N. These
paths can be described as (ni, sR, M1, w', u, M2, mux2, ri-1),
where w'∈{o, p, oR}. We have to note that mux2 is
replaced by mux1 when i=N and does not exist when i is
either equal to N+1 or N+2.  We select the following set
of paths :
• PE1 is the set of paths (ni, aR, M1,w'u, w', u, M2,w'u,
mux2, ri-1) where (w',u)∈{(o,m), (p,n), (p,m), (oR,m),
(oR,n)} and M1,w'u, M2,w'u consist only of d type sub paths
if (w',u)=(o,m), and only of a type sub paths for the other
combinations of (w',u), M1,w'u+M2,w'u=2(n-k)-i, 0≤
M1,w'u≤2(n-k)-i, k=2 when i=N, k=1 when i>N.
Case F. Let PF be the set of paths that have the form:
nI→S(1,i)→S(2,i)→...→S(k,i)→C(k+1,i)→C(k+1,i-1)→
S(k+1,i-2)→S(k+2,i-2)→…→S(i-3,i-2)→Oi+N-2 ≡ ri+N-2,
4≤i ≤N-1. These paths can be described as (ni, M1, w, y, u,
M2, mux1, ri+N-2). We select the following set of paths:
• PF1  is the set of paths (ni , L1, p, y, m, L2, mux1, ri+N-

2), L1+L2=i-4, 0≤L1≤i-4.
Case G. Let PG be the set of paths starting from ni and
ending at qi-2, with 3≤i≤N+2. These paths can be
described as (ni, sR, M, w, y1, y2, qi-2). Note that an sR
subpath exists only when i∈{N, N+1, N+2}. We select the
following set of paths:
• PG1 is the set of paths (ni, aR, My1,y2, w1, y1, y2, qi-2),

(w1,y1,y2)∈{(p, o ,o ), (o,p , p ), (o,o ,p )} and My1,y2

consist only of d type sub paths if w1=o, and only of a
type sub paths if w1=p.
Case H. Let PH be the set of paths starting from ni and
ending at qi -1, with 2≤i≤N+1. These paths can be
described as (ni, sR, M, w, y, qi-1). Note that an sR subpath
exists only when i∈{N,N+1}, so the italic font is used.

We select the following set of paths :
• PH1  is the set of paths (ni, aR, Mw,y', w, y', qi-1) where

(w,y')∈{(p, o ), (o,p )} and Mw,y' consists only of a type

sub paths if (w,y')=(p,o ) and only of d type sub paths if

(w,y')=(o,p ).

Case I. Let PI be the set of paths that have the form:
ni→S(i+N,i)→S(i+N+1,i)→...→S(i+N+k,i)→C(i+N+k+1,
i)→C(i+N+k+1,i-1)→S(i+N+k+1,i-2)→S(i+N+k+2,i-2)
→…→S(N,i-2)→Oi-2≡ri-2, i≥N. These paths can be
described as (ni, sR, M1, w, y, u, M2, mux2, ri-2). We have
to note that mux2 is replaced by mux1 for i=N, N+1 and
does not exist for i=N+2, N+3 and that sR does not exist
when L1=0. We select the following set of paths :
• PI1  is the set of paths (ni, aR, L1, wy', y, uy, L2, mux2,
ri-2) where (wy',uy)=(p,m) if L1≠0 and (wy',uy)= (oR,m) if
L1=0, L1+L2=2n-k-i, 0≤L1≤2n-k-i, k=5 if i=N, k=4
if i=N+1 and k=2 if  i>N+1.
Theorem 1. The paths selected in Cases A, B, C, D, E, F,
G and I above constitute a basis for every path that starts
from ni, ends at rj which does not contain v, z sub paths.
Theorem 2. The paths selected in Cases A-I above
constitute a basis for every path that starts from ni, ends at
qj which does not contain v, z sub paths.
Case J. Let PJ be the set of paths that have the form dj→
S(i-j+1,i)→S(i-j+2,i)→…→ri, 1<i<N. These paths can be
described as (dj, t, M, mux1, ri+N). We select the following
set of paths:
• PJ1  is the set of paths (dj, t', M, mux1, ri+N) where t' ∈
(e, h, i, l), M consists only of d type sub paths if t'=e, M=L
if t'=l, if t'=i and i-j is even M have the form (a, b, a, b..a)
and if t'=h and i-j is odd M have the form (b, a, b..a).
Case K. Let PK be the set of paths that have the form dj→
S(i-j+1, i)→ S(i-j+2, i)→ …→ ri, i≥N. These paths can be
described as (dj, t', M, mux2, ri), where t'∈ {e, f, g, h, i, j,
k, l} ∪{eR, fR}. We select the following set of paths:
• PK1  is the set of paths (dj ,t'', M1, mux2, ri), where t'' ∈
{e, h, i, l}∪{eR, fR}, M consists only of d type sub paths if
t'=e, M=L if t'=l, if t'=i and i-j is even M have the form (a,
b, a, b..a) and if t'=h and i-j is odd M have the form (b, a,
b..a).
 Case L. Let PL be the set of paths that have the form dj→
C(i,i+j-1)→C(i,i+j-2)→… →C(i,i-1)→C(i, i)→qi, 1≤j≤N.
These paths can be described as (dj, x', Y, qi), where x'∈
{q, r} ∪{qR, rR}. We select the following set of paths:
• PL1 is the set of paths (dj, x'', Y1, qi), where

x''∈{q} ∪{qR}, and Y1 consists only of p type sub-paths.

Theorem 3. The paths selected in Cases A-E and J, K
form a basis for any path that starts from dj and ends at ri

without v, z sub paths.
 Case M. Let PM be the set of paths that have the form nj→
S(1,j)→S(2,j)→…→S(j,j-1)→C(j,j)→S(j+1,i)→S(j+2,i)
→… →S(i, i) →Oi+N≡ri+N, 1≤j≤N-2, i<N, i>j. These paths



can be described as (nj, M1, w, v, M2, mux1, ri+N). We
select the following set of paths:
• PM1  is the set of paths (nj, M1, w, v', M2, mux1, ri+N),
where v'∈{ e, j }, M 1, M2 consist only of d type sub paths

if v'= e, M1 have the form (ada…dcac) if v'=j  and M2

have the form (abab…ab) if v'=j .

Case N. Let PN be the set of paths that have the form nj→
S(1,j)→S(2,j)→…→S(j,j-1)→C(j,j)→S(j+1,i)→S(j+2,i)
→…→S(N,i)→rI, 2≤j≤N-1, i≥N, i>j. These paths can be
described as (nj, M1, w, v, M2, mux2, ri). We select the
following set of paths:
• PN1  is the set of paths (nj, M1', w', v', M2', mux2, ri),

where v'∈{ e, j } and M1, M2 have the same form as above

(case M).
Theorem 4. The paths selected in cases A-N form a basis
for the modified NRCAD.
The proofs of Theorems 1, 2, 3 & 4 can be found in [19].

5. SPP-HFRT property of the derived basis

The paths selected in the previous section, apart from
forming a basis for the NRCAD, are all SPP-HFRT. For
testing a path of NRCAD under the SPP-HFRT
assumption we apply both transitions T (0->1 and 1->0) at
the start of the path. All the rest inputs are set to stable
values, such that all the on-path gates receive a stable non-
controlling value at their off-path inputs. Therefore the
transition is robustly propagated to a primary output for
observation. The required test vectors for SPP-HFRT
propagation of a T along the selected paths are given in
Table 3 of [19].

6. Conclusions

Path delay fault testing of a NRCAD is a difficult task due
to the excessively large number of its physical paths (see
last column of Table 4). In [6] a method has been
presented for deriving a minimal set of paths whose delay
should be measured in order for the delays along all other
paths to be computable. The number of paths of a minimal
basis is listed in Table 4. In order to measure the
propagation delay along the paths of the optimal basis
they should be SPP-HFRT. Unfortunately for most
circuits, among them the NRCAD as well, the paths of an
optimal basis are not all SPP-HFRT. To this end, in this
work we have proposed minor modifications to the
original NRCAD design. The proposed modifications
impose small hardware and negligible delay overheads.
For the modified design, we have derived a basis whose
paths are SPP-HFRT. The cardinality of the SPP-HFRT
basis although 30% larger than that of the optimal is still
many orders of magnitude smaller than the number of all
physical paths of the original design (Table 4).

Table 4
NRCAD

size
Paths of a

minimal basis [6]
Paths of the

SPP-HFRT basis
Physical

paths
8 528 735 3,7 x 1021

16 2464 3231 5,3 x 1080

32 10560 13599 6,4 x 10324

7. References

[1] J. Savir, "Scan Latch Design for Delay Test", Proc. of
ITC-97, pp. 446 - 453.

[2] Z. Brazilai and B. Rosen, "Comparison of AC Self -
Testing Procedures", Proc. of ITC-83, pp. 89 - 94.

[3] J. L. Carter, et.al., "Efficient Test Coverage Determination
for Delay Faults", Proc. ITC-87, pp. 418 – 427.

[4] G. L. Smith, "Model for Delay Faults Based upon Paths",
Proc. of  ITC - 85, pp. 342 - 349.

[5] T. W. Williams, et. al., "The interdependence between
delay optimization of synthesized networks and testing",
Proc. of the 28th DAC, pp. 87-92. ACM/IEEE, 1991.

[6] J. D. Lesser and J. J. Shedletsky, "An Experimental Delay
Test Generator for LSI Logic", IEEE Trans. on
Computers, C-29 (3), March 1980, pp. 235 – 248.

[7] W.-N. Li, et. al, "On path selection on combinational logic
circuits", IEEE Trans. on CAD, Jan. 1989, pp. 56-63.

[8] S. Tani, et.al, "Efficient Path Selection for Delay Testing
Based on Partial Path Evaluation", Proc. of 16th IEEE
VLSI Test Symp., pp. 188 - 193, 1998.

[9] K.-T. Cheng and H.-C. Chen. "Delay testing for non
robust untestable circuits", Proc. of ITC-93, pp. 954-961.

[10] W. K. Lam, et. al., "Delay fault coverage and performance
tradeoffs", Proc. of the 30th DAC, pp. 446-452.
ACM/IEEE, 1993.

[11] M. A. Gharaybeh, et. al., "Classification and test
generation for path - delay faults using single stuck - fault
tests", Proc. of ITC-95, pp. 139-148.

[12] U. Sparmann, et. al., "Fast identification of robust
dependent path delay faults", Proc. of the 32th DAC, pp.
119-125. ACM-IEEE, 1995.

[13] Kai Hwang, Computer Arithmetic : Principles,
Architecture and Design, John Wiley Publ., 1979.

[14] H. H. Guild, "Some Cellular Logic Arrays for
Nonrestoring Binary Division", The Radio and Elec.
Engr., vol. 39, June 1970, pp. 345 – 348.

[15] D. Nikolos et al., "Path Delay Fault Testing of ICs with
Embedded Intellectual Property Blocks", Proc. of DATE
'99, March 1999, pp. 112-116.

[16] A. K. Pramanick and S. M. Reddy, "On the Design of Path
Delay Fault Testable Combinational Circuits", Proc. of
Fault Tolerant Computing, 1990, pp. 374-381.

[17] W. Ke and P. R. Menon, "Synthesis of Delay – Verifiable
Combinational Circuits", IEEE Trans. on Computers, Feb.
1995, pp. 213-222.

[18] A. Krstic et. al, "Identification and Test Generation for
Primitive Faults", Proc. of ITC-96, pp. 423-432

[19] G. Sidiropoulos, H. T. Vergos & D. Nikolos, "Easily Path
Delay Fault Testable Non-Restoring Cellular Array
Dividers", Computer Technology Institute, Technical
Report No. 99/07/05, Greece, 1999.


