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Abstract
In this paper we present a method for path delay fault

testing of multiplexer-based shifters. We show that many
paths of the shifter are non-robustly testable and we give a
path selection method so as all the selected paths to be
robustly testable by 20 * log2n + 2 test-vector pairs, where
n is the length of the shifter. The propagation delay along
all other paths is a function of the delays along the
selected paths.

1. Introduction

Increasing performance requirements of the
contemporary VLSI circuits makes it difficult to design
them with large timing margins. Thus  imprecise  delay
modeling,  the  statistical variations of the parameters
during the manufacturing process as well as physical
defects in the integrated circuits can degrade circuit
performance without altering its logic functionality. The
change in the timing behavior of the circuit is modeled by
two popular fault models. One is the gate delay fault model
where delays violating specifications are assumed to be
due to a single gate delay [1, 2]. The other is the path delay
fault model where a path is declared faulty if it fails to
propagate a transition from the path input to the path
output within a specified time interval [3]. The latter model
is deemed to be more general since it captures the
cumulative effect of small delay variations in gates along a
path as well as the faults caused by a single gate. A
physical path of a circuit is an alternating sequence of
gates and lines leading from a primary input to a primary
output of the circuit. The number of physical paths in a
contemporary circuit is prohibitively large in order for all

the paths to be tested for path delay faults. To this end to
reduce the paths that must be tested for path delay faults
various path selection methods have been proposed ( for
example [4 - 7] ) although none of them has been proven to
be satisfactory for the general case.

This work addresses the problem of shifters' path
delay fault testing and is a part of a broader project
concerning the path delay fault testing of all modules
included in a data path (for example adders [7],
multipliers, etc.) Data paths are essential and generally the
biggest parts of microprocessors and microcontrollers.
Shifters can be implemented in different formats; such as
barrel-shifters or multiplexer based [8]. This work
considers implementations using standard cells because
they are becoming predominant in industrial context and
also can be easily automated through the use of an HDL.

An n-bit multiplexer-based shifter capable of
performing up to n-1 positions shift of its input operand in
a single clock cycle is a combinational circuit made up of
m = log2n levels. Each level requires n building blocks and
is capable of performing a shift function of 2i positions
according to the value of Ci, i ∈ {0, 1, …, m-1} which is
the common control signal of each level. Each level
accepts as inputs the outputs of the previous level (or the
primary inputs) and only drives the subsequent level (or
the primary outputs). A value of 0 at Ci indicates that no
shifting will take place at the ith level of the shifter. Each
function is selected according to the values of t1t0 signals
as shown in Table 1. Every building block of the shifter
accepts the same t1t0 signal values, thus it performs the
same shift function every clock cycle.

 We consider that the length n of the operand is a
power of 2, that is, n = 8, 16, 32, 64, … Only in some very
special cases, the length n may not be a power of 2. Figure



Figure 1. An 8-bit multiplexer - based shifter capable of performing 4 different shift functions.

Table 1. t 1t0 signals functionality
t1t0 Operation
00 Rotate Right
01 Logical Left Shift
10 Logical Right Shift
11 Arithmetic Right Shift

1 presents a 8-bit multiplexer-based shifter capable of
performing the four different functions indicated in Table
1. The routing between the various levels has been omitted
for clarity. Lines that should be connected between the
different levels have been named in a unique way. The
basic building block of the shifter is composed of two
multiplexers :
a.  A 4 -> 1 multiplexer controlled by the t1t0 signals

which implements the one out of four possible shift
functions. When t1t0 have the 00 or 01 or 10 or 11
value the rightmost, the next to the rightmost, the next
to the leftmost and the leftmost input of every 4->1
MUX are driven respectively to its output.

b.  A 2->1 multiplexer controlled by the appropriate Ci

signal.

2. Path Delay Fault Testing of the Shifter

During the normal operation of a multiplexer-based
shifter, there are transitions at the data inputs, the control
signals Cm-1Cm-2…C1C0, as well as the function signals t1t0.

This means that for path delay fault testing of the shifter,
we must consider delay faults along paths that are driven
from any of these possible sources.

We define a test session as the application of a pair of
test vectors which sensitize a certain path and propagate a
transition (0->1 or 1->0) of one of the inputs of the circuit
to at least one of the outputs of the circuit for observation.
We note that for each physical path two such test vectors
always exist in a completely robustly testable circuit. If
during a test session more than one distinct paths can be
sensitized in parallel and made to propagate a transition to
distinct primary outputs, then all these paths can be tested
in parallel for path delay faults, thus reducing testing effort
and the test application time significantly.

In a multiplexer-based shifter, we divide the possible
physical paths in three different categories.
1st Category. Paths starting from the data inputs.

 We define the paths established by a specific
combination of the control signals Cm-1Cm-2…C1C0  and the
function signals t1t0 as a group of paths or simply group.
Lemma 1. The propagation delays along all the paths of a
group can be measured in parallel.
Proof. a) The paths of each group defined by t1t0∈{00, 01,
10} and any value of the control signals Cm-1Cm-2…C1C0 do
not have any common sub-path. Thus propagation delays
along these paths can be measured in parallel. b) The
physical paths of each group, defined by t1t0=11 and any
value of the control signals Cm-1Cm-2…C1C0 may split into
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sub-paths that do not re-converge. Specifically each sub-
path ends to a distinct primary output of the shifter. So the
propagation delays along the paths of each one of these
groups can be measured in parallel. �

As weight w of a group we define the number of ones
in the combination of the control signals  Cm-1Cm-2…C1C0

that establishes the paths of this group. According to this
definition it is evident that the groups with same Cm-1

Cm-2…C1C0 values and different t1t0 values have the same
weight.
Theorem 1. For a specific value of t1t0 the propagation
delay along any path P1 in a group with weight w1>1 can
be calculated by the propagation delays along a path P2 in
a group with weight w2=w1-1, a path P3 in a group with
weight w3=1 and a path P4 in a group with weight w4=0.
Proof. Let P1 be a path with w1>1 and P1=P1a/P1b where P1a

is a sub-path from the data operand input to the output of
the first level i for which the corresponding control signal
Ci is 1. Consider now the path P4=P4a/P4b, where P4a and
P1a end at the same point and P4 belongs to the group with
weight 0. Furthermore, consider the path P2 =P2a/P2b where
P2a=P4a and P2b=P1b. Obviously, this path has a weight
w2=w1-1. Finally, consider the path P3 with P3=P3a/P3b

where P3a=P1a and P3b=P4b. The weight of path P3 is w3=1.
From the above analysis we can see that the propagation
delay d(P1) along path P1 can be expressed as a linear
combination of the propagation delays d(P2), d(P3) and
d(P4) along paths P2, P3 and P4 respectively, as follows:
d(P1) = d(P2) + d(P3) - d(P4) �

Example 1. For the shifter of Figure 1 consider t1t0 = 00.
Furthermore, consider the paths: P1=B4-O3/O3-P3/P3-R7,
established by C=101, that is, w1= 2, with P1a=B4-O3 and
P1b=O3-P3/P3-R7, P2=B3-O3/O3-P3/P3-R7, established by C=
100, that is, w2=1, with P2a=B3-O3 and P2b=O3-P3/P3-R7,
P3=B4-O3/O3-P3/P3-R3, established by C=001, that is,
w3=1, with P3a=B4-O3 and P3b= O3-P3/P3-R3, and P4=B3-
O3/O3-P3/P3-R3, established by C=000, that is, w4=0, with
P4a=B3-O3 and P4b=O3-P3/P3-R3. Then the propagation
delay time along path P1 can be expressed as : d(P1) =
d(P2)+d(P3)- d(P4).

Theorem 1 implies that the propagation delay along
any path with weight w greater than 1 can be calculated
from the propagation delays along a path with weight w-1,
a path with weight 1 and a path with weight 0. The
propagation delay along the path with weight w-1 can be
calculated from the propagation delays along a path with
weight w-2, a path with weight 1 and a path with weight 0.
Thus by induction we conclude that if we measure the
propagation delays along all paths in groups with weight 0
and 1, then we can calculate the propagation delays along
any path with greater weight. The groups of paths with
weight 0 are identical for any possible value of t1t0. Thus,
the propagation delays along these paths should only be

measured once.
The number of test sessions needed to measure the

propagation delays along the paths of groups with weight 0
and 1 is equal to: 2 * (4 * log2 n + 1), where n is the length
of the operand. For the shifter of Figure 1 the number of
such test sessions is 26.
2nd Category. Paths starting from the control inputs
Cm-1Cm-2…C1C0.

Let Li be the set of all paths starting from a control
signal Ci with all other control signals Cj=0, j≠i, and
t1t0=00.

A path from a control signal Ci through a 2->1 MUX
for which Ci is the control input, is established iff the
inputs of the multiplexer have complementary values.
Obviously there are two kinds of such paths from a control
signal Ci through a 2->1 MUX for which Ci is the control
input, the paths where the inputs of the multiplexer have
the values 0 and 1 and the those where the inputs of the
multiplexer have the values 1 and 0.

Consider now a control signal input Ci, and also that
for every Cj, with j≠i, Cj=0. Furthermore, consider that for
the function signals we have the values t1t0=00. In order to
achieve that the inputs of all 2->1 multiplexers at level i
have complementary values, we divide the data operand
inputs into two groups with complementary values between
them. The first group is constructed from the data inputs
numbered x, where x mod 2i+1 < 2i, and the second group is
constructed from the data inputs numbered y, where y mod
2i+1 ≥ 2i.
Example 2. Consider the control signal input C2 in Figure
1. In order to achieve that the inputs of all 2->1
multiplexers at level 2, have complementary values we
divide the data operand inputs into two groups, one group
with the inputs {B0, B1, B2, B3} and another group with the
inputs {B4, B5, B6, B7}. These two groups should have
complementary values. Furthermore, we must set C0C1= 00
and t1t0=00. To measure the propagation delay for each of
the transitions of C2, 0->1 and 1->0, we have to set
B0=B1=B2=B3=0 and B4=B5=B6=B7=1 and then
B0=B1=B2=B3=1 and B4=B5=B6=B7 =0.

Lemma 2. The propagation delays along all paths starting
from a control input Ci to the primary outputs of the
shifter, with Cj=0 for every j≠i and t1t0=00, can be
measured in parallel, for every one of the two
combinations of complementary values for the two groups
of data inputs.
Proof. Since Cj=0 for every j≠i all these paths do not have
any common sub-path, thus the propagation delays along
them can be measured in parallel. �

For every level i the number of test sessions in order
to measure the propagation delays along the paths in set Li

is 4. Thus in order to measure the propagation delay times



along the paths in all sets Li, where 0 ≤ i ≤ m-1, we need
4*m = 4*log2n test sessions.
Theorem 2. If we measure the propagation delays along all
the paths in set Li, 0 ≤ i ≤ m-1, then for every other path
starting from Ci its propagation delay can be expressed as a
linear combination of the propagation delays along paths in
Li and paths of the 1st category.
Proof. Let P1=P1a/P1b be a path starting from Ci, where P1a

is the sub-path from the input Ci to the output MO of the
2->1 multiplexer of level i. Furthermore consider the
corresponding path P2=P2a/P2b in Li with P2a=P1a. Next
consider the path P3=P3a/P3b of the 1st category, where P3a

is the sub-path from the corresponding data input to the
multiplexer output MO with Cj=0 for j<i and P3b=P1b.
Finally, consider the path P4=P4a/P4b of the 1st category,
where P4 belongs to the group of weight 0 and P4a=P3a and
P4b=P2b. From the above analysis we can see that the
propagation delay d(P1) along path P1 can be expressed as
a linear combination of the propagation delays d(P2), d(P3)
and d(P4) along paths P2, P3 and P4 respectively, as : d(P1)
= d(P2) + d(P3) - d(P4). Note that the paths P3 and P4 are
established for the same values of t1t0 as P1. The fact that
the path P2 has been measured with t1t0=00 does not
invalidate our results since the propagation delay along
sub-paths P2b, P4b is independent of the values of t1t0. �

3rd Category. Paths starting from the function inputs.
In this case we have to measure the propagation

delays along paths with input t0 or t1 and output one of the
primary outputs of the shifter for constant values at the
data inputs and Cm-1Cm-2 … C0. Since t0 and t1 drive all
levels of the shifter there are non-robustly testable paths.
For example the path with input t0 and output R3 in Figure
1 for t1=0, C0=C1=1, C2=0 and B0=0 and B2=1 is non-
robustly testable because the AND gate in the multiplexer
with label 3 in level 1, that belongs on the path is driven
also by t0. The same is valid for the paths where more than
one of the signals Cm-1Cm-2 … C0 are equal to 1.

Let Mi and Qi be the sets of all paths starting from t0

and t1 respectively with Ci =1 and all the other control
signals Cj=0, with j≠i. The measurement of the propagation
delays along the paths of  Mi and Qi for i=0, 1, 2,…,log2n-1
can be done as the paths of Li in case 2. Specifically
holding the data inputs to the values : 2i zeroes, 2i+1 ones,
2i+1 zeroes, 2i+1 ones … and 2i ones, 2i+1 zeroes, 2i+1 ones,
2i+1 zeroes … for each transition 0->1 and 1->0 of t0 and t1,
we measure the propagation delays of all paths belonging
to Mi and Qi.

The propagation delays along any other path not
belonging to Mi or Qi for i = 0, 1, …, log2n - 1 can be

calculated as a function of the propagation delays of paths
belonging to Mi or Qi and two paths of the 1st category.

For example in Figure 1 the propagation delay along
the path P1=t0-O4/O4-P2/P2-R2 (C0=C1=1, C2=0) can be
calculated from the delays along the paths : P2=t0-O4/O4 -
P4/P4-R4 (C0=1, C1=C2=0, t1=0, t0=T, where T denotes a
transition 0->1 or 1->0), P3=B5-O4/O4-P4/P4-R4 (C0=1,
C1=C2=0, t1=t0=0), P4=B5-O4/O4-P2/P2-R2 (C0=C1=1, C2=
0, t1=t0=0), as : d(P1) = d(P2) + d(P4) - d(P3)

For every level i the number of test sessions in order
to measure the propagation delays along the paths in sets
Mi and Qi is 8. Thus in order to measure the propagation
delay times along the paths in all sets Mi and Qi, where 0 ≤
i ≤ m-1, we need 8*log2n test sessions.

From the above analysis we conclude that all possible
paths of an n-bit shifter require 20*log2n+2 test sessions
for path delay fault testing.

3. Conclusions

The number of all logical paths (physical paths * 2) of
the shifter is O(n2), where n is the length of the shifter.
Many of them are not robustly testable. In this paper we
proposed a new path selection method so as all the selected
paths to be robustly testable by O(log2n) test-vector pairs.
We have also shown that the propagation along all the
other paths can be calculated from the delays along the
selected paths. Therefore the application of the proposed
method reduces significantly the test application time.
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