

J. Hlavicka et al (Eds.): EDCC-3’99, LNCS 1667, pp. 267-282, 1999
© Springer-Verlag Berlin Heidelberg 1999

Path Delay Fault Testing of a Class of Circuit-Switched
Multistage Interconnection Networks

M. Bellos1, D. Nikolos1,2 & H. T. Vergos1,2

1Dept. of Computer Engineering and Informatics, University of Patras, 26 500, Rio, Greece
tarka@ceid.upatras.gr, {nikolosd, vergos}@cti.gr

2Computer Technology Institute, 3, Kolokotroni Str., 262 61 Patras, Greece

Abstract. In this paper we consider path delay fault testing of a class of
isomorphic Multistage Interconnection Networks (MINs) with centralized
control using as representative the nxn Omega network. We show that the
number of paths is 3n2-2n and we give a method for testing those applying only
2(3n-2) pairs of test vectors. We also show that this is the least number of test
vector pairs that are required for testing all paths of the MIN. We also give a
path selection method such that: a) the number of selected paths, that is, the
number of paths that must be tested, is a small percentage of all paths and the
propagation delay along every other path can be calculated from the propagation
delays along the selected paths, b) all the selected paths are tested by using
2(3log2n+1) test vector pairs. Both methods derive strong delay–verification test
sets.

1 Introduction

Multistage Interconnection Networks (MINs) represent a compromise between the
single bus and the crossbar switch interconnections from the point of view of
implementation complexity, cost, connectivity and bandwidth. A MIN consists of
alternating stages of links and switches. Many kinds of MINs have been proposed and
built for use in massively parallel computers [1, 2].

The testing of MINs has been widely considered with respect to the state stuck-at
fault model, the link fault model and the switch fault model [for example 3, 4].
However, physical defects in integrated circuits can degrade circuit performance
without altering their logic functionality. Apart from this, increasing performance
requirements of the contemporary VLSI circuits makes it difficult to design them with
large timing margins. Thus imprecise delay modeling and the statistical variations of
the parameters during the manufacturing process may result in circuits with greater
delays than the expected ones. The change in the timing behavior of the circuit is
modeled by two popular fault models. One is the gate delay fault model where delays
violating specifications are assumed to be due to a single gate delay [5, 6]. The other is
the path delay fault model where a path is declared faulty if it fails to propagate a
transition from the path input to the path output within a specified time interval [7].
The latter model is deemed to be more general since it captures the cumulative effect

268 M. Bellos, D. Nikolos, and H. T. Vergos

of small delay variations in gates along a path as well as the faults caused by a single
gate.

A physical path of a circuit is an alternating sequence of gates and lines leading
from a primary input to a primary output of the circuit. In delay fault test generation
we associate two logical paths with each physical path. A logical path is a pair (T,

p) with T = x → x, x ∈ B = {0, 1}, being a transition at the input of p. In the case
of delay fault testing the test set consists of pairs of vectors. The cardinality of the test
set, that is, the number of pairs of vectors depends on the number of the paths that
must be tested and the percentage of the paths that can be tested in parallel.
Throughout the paper the term test session is used to denote the application of a test
vector pair. The number of physical paths in a contemporary circuit is prohibitively
large in order for all the paths to be tested for path delay faults. To this end to reduce
the paths that must be tested for path delay faults various path selection methods have
been proposed (for example [8–11]) although none of them has proven to be
satisfactory for the general case.

In this paper we address the problem of testing for path delay faults a class of
isomorphic circuit-switched MINs with centralized control, using as representative the
Omega network [12]. We consider that the network has been implemented as a set of
b/M M-bit slices [13], where b is the size of the bus of each source and destination of
the network, 1≤M≤b and each slice has been implemented as a VLSI chip. For M=b
the network has been implemented on a single chip (probably on a single wafer). The
test sets that we derive are strong delay–verification test sets, therefore, their
application ensures that if the circuit under test (CUT) functions correctly at a speed it
will also operate correctly at every lower speed. In section 2 we present the
terminology that will be used in this paper. In section 3 we present the main features
of the Omega network and we show that the number of physical paths is O(n2). In
section 4 exploiting the inherent parallelism of the Omega network we show that it can
be tested for path delay faults in O(n) test sessions. We also show that the derived test
set is a strong delay-verification test set. In section 5 we present a new path selection
method such that: a) the paths, which are selected for testing constitute a small
percentage of the total number of paths; the delay along the rest paths can be
calculated from the propagation delays along the selected paths, b) the propagation
delays along n of the selected paths are measured in parallel during each test session.
According to this method the required number of test sessions is O(log2n). The
application of this method cuts down the test effort as well as the test application time
significantly. We also show that the derived test set is a strong delay–verification test
set. The conclusions are given in section 6.

2 Preliminaries

A two pattern test T = <V1, V2> is said to be a robust delay test for a path P, for a
rising or falling transition at the output of the path, if and only if, when P is faulty and
test T is applied, the circuit output is different from the expected state at sampling
time, independent of the delays along gate inputs not on P [14]. A robust test may

Multistage Interconnection Networks 269

actually propagate transitions to an output through more than one path to that output in
the circuit; such a test is called Multiple-Path Propagating Robust Test (MPP-RT)
[15]. A robust test that propagates the fault effect through only a single path to an
output in the circuit will be called a Single-Path Propagating Robust Test (SPP-RT)
for that output. For example consider the circuit in Figure 1 [15]. The test < V1, V2>,
with V1=(a=1, b=0, c=1, d=1) and V2=(a=0, b=0, c=0, d=1) for a falling transition at
the output y is a MPP-RT, which sensitizes and propagates fault effects robustly along
both the paths a-3-y and c-3-y to the output y. The test <V1, V2> with V1= (a=0, b=0,
c=1, d=1) and V2 = (a=0, b=0, c=0, d=1) for a falling transition at the output y is a
SPP-RT, which sensitizes and propagates the fault effect robustly only along the
single path c-3-y. We define a robust test as Multiple SPP-RT (M-SPP-RT) if it
propagates the effect of one or more faults along distinct paths or along paths starting
from the same primary input and ending at distinct outputs without internal
reconvergent fanouts. For example in Figure 4.a the test < V1, V2>, with V1= (X0i=0,
X1i=0, c=0) and V2= (X0i=1, X1i=1, c=0), is a M-SPP-RT that propagates the effect of
delay faults along the distinct paths X0i-3-7-Y0i and X1i-5-8-Y1i. Also the test <V1, V2>
withV1= (X0i=0, X1i=1, c=0) and V2= (X0i=0, X1i=1, c=1)), is a M-SPP-RT that
propagates the effect of delay faults along the paths c-4-7- Y0i and c-2-5-8-Y1i. We
have to note that in the circuit of Figure 1 the test < V1, V2>, with V1=(a=0, b=0, c=0,
d=1) and V2=(a=1, b=0, c=0, d=1) is not a M-SPP-RT because the paths a-2-5-x and a-
3-5-x reconverge.

5
2

3

4
61

D

E

F

G

\

[

Fig. 1.

A robust test is said to be a Hazard-Free Robust Test (HFRT) if no hazards can
occur on the tested path during the application of the test, regardless of the gate delay
values. Therefore, a M-SPP-HFRT < V1, V2> has to provide steady, glitchless,
sensitizing values at all the off-path inputs along more than one paths, when the
primary inputs changed from V1, to V2.

Robust tests may not exist for all path delay faults in an arbitrary circuit. Some
nonrobust tests can be shown to be valid if certain other faults have been tested
robustly [16]. Such tests are called Validatable Nonrobust (VNR) tests. The term RV
tests is used to denote tests that are robust or validatable nonrobust. A circuit is RV -
testable if there is a robust or a VNR test for any single path delay fault. It has been

270 M. Bellos, D. Nikolos, and H. T. Vergos

shown in [17] that the fact that a circuit functions correctly at a clock speed does not
imply that it will also function correctly at a lower clock speed. A set of path delay
tests is called a strong delay–verification test set if the correct response of the CUT at
a speed implies correct operation at any lower speed [17]. A circuit which has a strong
delay-verification test set is called a delay-verifiable circuit [17].

3 Omega Networks

We consider nxn Omega MINs, where n=2k. An Omega MIN is constructed from
N=log2n stages of switches, where each of the stages has n/2 2x2 switches. The switch
stages are labeled from 1 to N. There are also the stages 0 and N+1 which are formed
from the source and destination nodes respectively. The interconnection pattern
between adjacent stages is the perfect shuffle permutation [18]. This holds for all pairs
of stages except N and N+1. Figure 2 shows an 8x8 Omega MIN.

0 0

1 1

S0

Source Destination

stage 1 stage 2 stage 3

0 0

1 1

0 0

1 1

0 0

1 1

0 0

1 1

0 0

1 1

0 0

1 1

0 0

1 1

0 0

1 1

0 0

1 1

0 0

1 1

0 0

1 1

c1,1

stage 4stage 0

c1,2

c1,3

c2,2

c2,1 c3,1

c1,4

c3,2

c3,3

c2,4

c2,3

c3,4

S1

S2

S3

S4

S5

S6

S7

D0

D1

D2

D3

D4

D5

D6

D7

Fig. 2. 8x8 Omega Network

An inherent property of the Omega MIN is that distinct paths of the MIN may have
common links and switches. Thus, a conflict appears when any two sources are trying
to set any switch of the network in complementary states.

Each switch S, as shown in Figure 3.a has a pair of input data buses X0, X1, a pair of
output data buses Y0, Y1 and a control signal c. All four buses are identical in size and
unidirectional. The two states of the switch S are determined by the control line c as
follows: the direct state shown in Figure 3.b, where the values of X0, X1 are propagated
to Y0, Y1 respectively, and a cross state shown in Figure 3.c, where the values of X0, X1

are propagated to Y1, Y0 respectively. The upper input and output are labeled with 0
while the lower are labeled with 1. Each switch is constructed from 2M 2->1
multiplexers, where M is the size of the buses. Each pair of multiplexers, see Figure

Multistage Interconnection Networks 271

3.d, accepts two lines of X0, X1 buses, the control signal c and drives the corresponding
lines of buses Y0, Y1.

����������������
6ZLWFK

����������������

&RQWURO� F

;
�

;
�

<
�

<
�

F� ��

F� ��

;
�

;
�

;
�

;
�

<
�

<
�

<
�

<
�

X0i

X1i

Y1i

Y0i

c

G�

D��6ZLWFK�6

F��&URVV�VWDWH

E��'LUHFW�VWDWH

Fig. 3.

Without loss of generality we consider that each link between sources and switches,
between switches, as well as switches and destinations is a single virtual line, that may
actually represent either one physical line or a physical bus. For testing purposes any
value of the virtual line is always applied to every line of the physical bus that it may
represent. Paths along the MIN are formed by concatenation of subpaths along links
and subpaths through switches of the MIN as well as by subpaths sourcing from the
control signals. We will hereafter present the analysis based on virtual lines (or simply
lines). The analysis will be valid for all M lines of the bus. We note that to every
virtual path or line correspond two logical virtual paths.

In an nxn Omega MIN we distinguish the paths in two sets: those not including
subpaths sourcing from a control input and those which do. Since the connections of
sources to destinations change dynamically during system operation, delays that stem
from the control signals are also significant. Let P be the set consisting of all virtual
paths starting from any source and ending at any destination. Since there are n sources
and there is only one path from one of them to all the destinations, the number of all
possible virtual paths is n2. That is the cardinality of P, denoted P , is P = n2.

Let L be the set consisting of all paths starting from the control input of a switch
and ending at any destination. Figures 4.a and 4.b present the subpaths from the
control input of a switch through two of its 2M multiplexers for X0i=0 and X1i=1 and
for X0i=1 and X1i=0. Since the transition, during delay testing, propagates from the
control input through 2M multiplexers and along the lines of the bus, in this case we
refer also to virtual paths. For computing the number of the virtual paths starting from

272 M. Bellos, D. Nikolos, and H. T. Vergos

a control input we observe that at every stage the control input of a switch can be seen
as the root of two full binary trees having the destinations as leaves. Each such tree
has a depth of N-i+1, where i is the number of the stage and i∈{1, 2, ..., N}. The
latter means that every such tree has 2N-i+1 leaves which is also the number of virtual
paths. Since each stage has n/2 switches and each switch is the root of two trees, there
are 2*(n/2)*2N-i+1 virtual paths starting from each stage’s control inputs. Thus the
cardinality of L is equal to the sum of the virtual paths starting from every control

input, which is: L = ∑
=

+−N

i

iNn

1

12
2

2 = 2
2

n
2(2N-1) = 2n(n-1)

a) X0i=0, X1i=1 b) X0i=1, X1i=0

X0i

X1i

Y1i

Y0i

c

X0i

X1i

Y1i

Y0i

c

1

2

3

4

5

6

7

8

Fig. 4.

Therefore the total number of virtual paths is equal to: P + L = 3n2 - 2n and the

number of all logical virtual paths is: LV = 2(3n2 - 2n)

The number of physical lines is equal to M(3n2 - 2n), however the propagation
delays along the M lines of the bus are measured in parallel.

Although the number of the virtual paths of an nxn Omega network is O(n2) we will
show in the next section that due to the inherent parallelism of the network the
propagation delay along various paths can be measured in parallel.

4 Method One: Parallel Testing

It is well known that in an Omega network when the control inputs get a set of values
each source is connected to a different destination. Throughout this section we
consider that all control inputs of stage i, for i=1, 2, ..., N, of the Omega network take
the same value ci. Then changing the value of the control inputs of a stage i the
switches of this stage from the direct state go to the cross state or from the cross state
go to the direct state, and all paths from sources to destinations are changed. Then
taking into account that in the Omega network only one path exists from a specific
source to a specific destination we conclude that for the two sets of values of c1c2...cN

and of c1’c2’...cN’, with c1c2...cN ≠ c1’c2’...cN’, a common path from the source to
destination in both configurations of the network does not exist. Therefore, applying

Multistage Interconnection Networks 273

to c1c2...cN all possible values, that is 2N different values, we ensure that each source
has been connected to each destination. A feature of the Omega network is that every
source can be connected to every destination. Thus taking into account that we have n
destinations we conclude that at least n value combinations of the control signals are
necessary so that each source to be connected to each destination. From the above
discussion we conclude that 2N is the least number of configurations that ensures that
all possible paths from sources to destinations have been established. For each
configuration, that is a value of c1c2...cN, we can measure the delays along n virtual
paths, hence 2*2N test sessions are required in order to measure the delays along all
logical virtual paths from sources to destinations. Let Tp denote the number of test
sessions required to measure the delays along all paths from sources to destinations.
Then :

Tp = 2*2N = 2n (1)

As we have already observed at every stage i a control input can be seen as a root
of two full binary trees having the destinations as leaves. We have also shown that
every such tree has 2N-i+1 virtual paths from the root to the leaves. For any combination
of values of ci+1ci+2...cN two paths starting from the control input of each switch of the
stage i are established, that is we have 2*n/2 virtual paths, along which the delay can
be measured in parallel. Then taking into account that to each switch of the stage i
correspond two trees each one with 2N-i+1 virtual paths we conclude that 2 * 2 * 2N-i+1

/ 2 test sessions are required for measuring the propagation delay along the logical
virtual paths starting from a control input of stage i. Taking into account that i=1, 2, ...,
N we get that the total number of test sessions TL for measuring the propagation delays
along the virtual paths starting from control inputs is :

TL = 2 * ∑
=

+−N

i

iN

1

12 = 4(2N-1) = 4(n-1)
(2)

From relations (1) and (2) we get: Tp + TL = 2(3n-2).
Therefore, while the number of virtual paths of a nxn Omega network is O(n2) we

have shown that the number of the required test sessions is O(n). In a circuit with n
outputs the maximum number of paths that can be tested in parallel is equal to n. Then
taking into account that the number of all logical virtual paths of the nxn Omega
network is equal to 2(3n2-2n) and the fact that 2(3n-2) test sessions are required we
conclude that this is the optimal number of test sessions required to test all possible
paths.

From the above discussion it is evident that all paths of an Omega MIN are
sensitizable. Furthermore it is evident that the derived test set consists of M-SPP-
HFRT test vector pairs, that test all paths of the MIN. Since the M-SPP-HFRT tests
are a subset of the RV-tests and we test all paths of the MIN, from Theorem 1 in [17]
we conclude that the proposed test set is a strong delay-verification test set. This
implies that the correct function of the circuit at the tested speed ensures correct
operation at any lower speed.

274 M. Bellos, D. Nikolos, and H. T. Vergos

5 Method Two : Path Selection Based Method

It has been shown in [8] that by measuring the delays along a suitable very small set •
of physical paths, the propagation delay along any other path can be calculated.
However, this method can not exploit the inherent parallelism of Omega or their
isomorphic networks. The method proposed in this section exploiting the parallelism
of the Omega networks derives a basis with cardinality n times smaller than that
derived by the method of [8]. For simplifying the analysis, we examine the sets P, L
separately.

5.1 Set P

As a first step, we represent the MIN as a graph where each switch, source and
destination is represented by a node of the graph and each link by a line. We observe
that the graph is a collection of full binary trees with root nodes connected by links at
stages m and m+1 with m∈{1, 2, ..., N-1}. When N is even we choose m=N/2 and the
binary trees on the left as well as on the right are of depth m, while when N is odd we
choose m = N/2 , where x denotes the integer part of x, and the binary trees on

the left are of depth m, while the ones on the right are of depth m+1. The left trees
have as leaves the sources and the right the destinations. We define m' to be the depth
of the right tree and it is equal either to m if N even, or to m+1 if N is odd.

Figure 5 presents one pair of the above trees along with their interconnection. We
denote a pair of such trees as a t-structure. All t-structures are similar. In every nxn
Omega network there are exactly n different t-structures since there are n different
links between the stages where the connection of a pair of trees takes place. These t-
structures do not have any virtual paths in common because the connection between
any two tree pairs that form a t-structure is distinct. The latter property does not
eliminate the possibility of having common subpaths.

... ...

......

Source or destination Output of a switch Input of a switch

Stage 1 Stage m Stage m+1 Stage N

c1
cm cm+1 cN

0

m m’

2m-1

j

0

2m’-1

k

...

...
...

...

Fig. 5.

Lemma 1. The n t-structures represent all virtual paths of set P.

Multistage Interconnection Networks 275

Proof. a) N is even, that is N=2m. Then the two trees of a t-structure have the same
number m of levels and therefore have 2m leaves each. The number of virtual paths,
denoted V, of each t-structure is: V = 2m2m = 22m = 2N = n (N=log2n)
b) N is odd, that is N=2m+1. Then the left tree of a t-structure has m levels and the
right tree has m+1. Thus, they have 2m and 2m+1 leaves respectively. The number of
virtual paths of a t-structure is: V = 2m2m+1 = 22m+1 = 2N = n (N=log2n)
In both cases we have n t-structures and any two of them represent distinct virtual
paths, therefore, the number of virtual paths in each case is n2. n

Any two virtual paths of a t-structure cannot be tested in parallel for delay faults
since every possible pair of virtual paths requires at least one of the switches at stages
m and m+1 to be in contradictory states. For example, in Figure 2, the paths from S0 to
D0 and S4 to D2 belong to the same t-structure and the propagation delays along them
cannot be measured in parallel because the switches at the stages m=1 and m+1=2
cannot be in the direct and cross state simultaneously. On the contrary, virtual paths
belonging to different t-structures can be tested in parallel for path delay faults,
provided that two or more virtual paths do not force common switches in contradictory
states. If no conflict arises, n virtual paths one from each t-structure can be tested in
parallel by a single test session.

We define Q as the set of the following paths of a t-structure:
• All paths from one source to all destinations. The number of these paths is equal to

the number of leaves of the right tree. We denote this set as QA.
• All paths from all sources except the one assumed in a) to a single destination. The

number of these paths is equal to the number of leaves of the left tree minus 1. We
denote this set as QB.

Theorem 1. If the propagation delays along all paths of set Q of a t-structure are
known, the propagation delay along any path of a t-structure can be calculated.
Proof. Without loss of generality suppose that Q contains all paths from the source
with address 0 to all 2m’ destinations and the paths from sources with addresses 1 to 2m-
1 to the destination with address p, where 0≤p≤2m’-1. Let j->k be a path from source
with address j, 0<j≤2m-1 to the destination with address k with 0≤k≤2m’-1 and k≠p.
Then the propagation delay along the path j->k can be calculated as :

d(j->k) = d(j->p) + d(0->k) - d(0->p) n

We will show in the sequel that there is no need to measure the propagation delays
along all virtual paths belonging to the set Q for every t-structure. The n t-structures of
the network can be split in two parts: the left will contain the left trees and the right
the right trees. All left trees have the same depth, as well as all right trees have the
same depth. We will present an algorithm that manipulates the control signal values of
the switches, such that n virtual paths, each belonging to a distinct t-structure, can be
tested in parallel. The algorithm takes advantage of the fact that two t-structures can
have common switches that form subtrees either on the right or the left part, as shown
in Figure 6. This can be used in minimizing both the number of virtual paths that need
to be tested and the number of test sessions required. The algorithm first manipulates
the switches of the right part and next those of the left part. Each stage’s control
signals are set by a bit of an N-bit binary number. Control signals of stage i, i∈{1, 2,
..., N} are controlled by bit ci. Hence the m leftmost bits represent the control signals’
values for the left part of the MIN while the rest for the right part.

276 M. Bellos, D. Nikolos, and H. T. Vergos

Let p1 and p2 be two sources in two different t-structures TS1 and TS2, as shown in
Figure 6. The two t-structures have common switches that form a subtree of l levels.
Suppose that the delays along all virtual paths starting from p1 and ending at the
destinations in set S1 and those along all virtual paths starting from p2 and ending at the
destinations of set S2 are known. Then measuring the delay along a virtual path
starting from p1 and ending at a destination of S2 and a path starting from p2 and ending
at a destination of S1 we can calculate the delays along all virtual paths starting from p1

or p2 and ending at any destination in sets S1 and S2. For example, suppose that we
want to calculate the propagation delay along path p1->j, where j is a destination in S2.
If we know the propagation delay along p1->k, k is in S2, then the propagation delay of
p1->j can be calculated from the propagation delays of p1->k, p2->j and p2->k as : d(p1

->j) = d(p2->j) + d(p1->k) - d(p2->k).

...

...

...

...

Source or destination Input of a switch

Stage N

p1

p2

...

...
...

...

...
...

...

......

...

...

l

...

...

l-1
...

Stage 1 Stage m Stage m+1 Stage N-l+1

Stage N-l+2

...

...

S1

S2

TS1

TS2

First common switch

Output of a switch

j

k

Fig. 6.

The following algorithm establishes all virtual paths along which the propagation
delay must be measured.
Algorithm 1
Consider that all control inputs of stage i, for i = 1, 2, ..., N take the same value of ci.
Then one control bit is required for describing the state of the switches of every stage.
Hence for the N stages we need N bits, c1, c2, ..., cN. Set m = N/2 and m’ = N/2,
where x denotes the least integer greater than or equal to x.

Step 1. Set c1 ... cm cm+1 .. cN = 0 ... 00.

Multistage Interconnection Networks 277

Step 2. Apply two test sessions, one for transition 0->1 and the other for 1->0.
Step 3. Set cm cm+1 .. cN = 0 ... 01.
Step 4. Apply two test sessions, one for transition 0->1 and the other for 1->0.
Step 5. Shift left cm cm+1 .. cN (consider that the rightmost bit is filled with a zero).
Step 6. If cm ≠ 1 then go to step 4.
Step 7. Set c1 c2 ... cm cm+1 = 100 ... 0
Step 8. Apply two test sessions, one for transition 0->1 and the other for 1->0.
Step 9. Shift right c1 c2 ... cm cm+1 (consider that the leftmost bit is filled with a

zero).
Step 10. If cm+1 ≠ 1 then go to step 8 else end.

From the above algorithm we conclude that 2(m’ + m + 1) = 2N + 2 test sessions
are required.
Theorem 2. The propagation delays along any path of set P that has not been measured
during the application of the algorithm can be calculated from the measured
propagation delays.
Proof. By steps 1, 2, 3, 4 the propagation delays along 2n virtual paths for n trees of
the form of Figure 7.a have been measured. Thus for each tree we know the
propagation delays along virtual paths from the same source to two destinations, since
switches on the left side of the MIN remain unchanged. These n trees are of depth 1.
After the first iteration of steps 5, 6, 4 switches at stage N-1 are considered and the
propagation delays along n more virtual paths have been measured. These n virtual
paths are distinct compared to the previous virtual paths established since the proposed
algorithm manipulates a different stage of switches at each iteration. Thus any of the n
virtual paths established from a source end at a distinct destination.

a) b) c)

Si

i

Stage N
i

j

Si

Sj

Stage NStage N-1

...i

j

Si

Sj
...

Stage N-k

...
...

Stage N-k+1

Fig. 7.

Suppose that from source i the virtual path ends at a destination of Sj. Then the
virtual path starting from j ends at a destination of Si since the switch that is
manipulated is common for both virtual paths. From the above, we can calculate the
propagation delays along all virtual paths starting from i or j and ending at a
destination of Si ∪ Sj. The latter means that two trees of depth 1, with their right
subtrees connected by a switch at stage N-1, can be combined to form two trees of
depth 2 from the same sources, as shown in Figure 7.b. This is possible for every pair
of such trees and thus after each iteration we have n trees available.

After k-1 iterations of steps 5, 6, 4 the propagation delays along the virtual paths of
n trees of depth k have been measured or calculated. Suppose that we consider two

278 M. Bellos, D. Nikolos, and H. T. Vergos

such trees i, j that have a common switch at stage N-k. At the next iteration of steps 5,
6, 4 this switch is set to the cross state. Now a virtual path is established from i to a
destination of Sj and another one from j to a destination of Si. In the same manner we
can calculate the propagation delays along all virtual paths from i or j to Si ∪ Sj thus
forming two trees of depth k+1 that start from i and j, as shown in Figure 7.c.

After m’ iterations the propagation delays along all virtual paths of n m’-depth trees
are known which means that we know all the propagation delays along all virtual
paths of each of the n QA sets.

In the same manner, steps 7-10 of Algorithm 1 provide the information for
calculating the propagation delays along all virtual paths of n m-depth trees that each
ends at a specific destination. Hence we know the propagation delays along all virtual
paths in the QB sets. Thus we can calculate the propagation delays along all virtual
paths of all the QA and QB sets and from Theorem 1 we can calculate the propagation
delays along all virtual paths of set P. n

5.2 Set L

For path delay fault testing of paths starting from the control input of a switch, the
inputs X0 and X1 of the switch must be set to complementary values.

Figures 4.a and 4.b present the subpaths from the control input of a switch through
two of its 2M multiplexers for X0i=0 and X1i=1 and for X0i=1 and X1i=0 respectively.
Therefore for path delay fault testing of the paths starting from the control input of a
switch at least two sessions are required, one with X0i=0 and X1i=1 and one with X0i=1
and X1i=0.

Consider for the rest of this section that all control inputs of stage i, for i=1, 2, ..., N
of the network take the same value ci. The following Algorithm establishes virtual
paths along which the propagation delays must be measured.
Algorithm 2.
Step 1. Set i=1.
Step 2. Set cj=0 for all j∈{1, 2, ..., N} with j ≠ i.
Step 3. Set the sources to the suitable values such that each switch to receive

X0=0 and X1=1 and measure the delays along the paths from the n/2 ci

inputs to the n destinations.
Step 4. Set each source to its complement and measure the delays along the paths

from the n/2 ci inputs to the n destinations.
Step 5. If i<N then set i=i+1 and go to step 2 else end.

We note that in each one of the steps 3 and 4 two measurements are required, one
for the transition 0->1 and one for transition 1->0. Therefore Algorithm 2 applies 4N
= 4log2n test sessions.

After the application of Algorithm 2 we have measured the propagation delays
along all paths starting from a control input ci,j of the switch j of stage i that pass
through the output Y0(i,j) or Y1(i,j) of the switch and ends at a destination Dk with

1j1,+ic =
2j2,+ic = ... =

1-i-NjN,c = 0, where j1, j2, …, jN-i-1 ∈ {1, 2, ..., n/2}.
For example, we can see from Figure 2 that such a path is the path from c1,1->D0,

which is established when we have S0 = 0 and S4 = 1 (for S0 = 1 and S4 = 0 we have

Multistage Interconnection Networks 279

another path from c1,1->D0) and c2,1 = c3,1 = 0. The propagation delays along the path
c1,1->D3, which is established when we have S0 = 0, S4 = 1 and c2,1 = c3,1 = 1, has not
been measured. However, the propagation delay along c1,1->D3 can be calculated from
the propagation delays along paths c1,1->D0 (was measured), S0->D0 and S0->D3 as :
d(c1,1->D3) = d(S0->D3) + d(c1,1->D0) - d(S0->D0)

We note that the paths S0->D0 and S0->D3 belong to P, hence the propagation delays
along them are already known.
Theorem 3. The propagation delays along any virtual path of set L that has not been
measured during the application of Algorithm 2 can be calculated from the measured
propagation delays, during the application of Algorithm 2, and the propagation delays
along paths of set P.
Proof. Let ci,j denote the control input of switch j of stage i, then j∈{1, 2, ..., n/2}.
Consider a path that starts from a control input ci,j, passes through Yz, with z = 0 or z
= 1 that ends at Dw such that at least one of

1j1,+ic ,
2j2,+ic , ...,

1-i-NjN,c is equal to 1.

The propagation delay along the path ci,j -> Yz -> Dw has not been measured.
Consider the following paths:

The path ci,j -> Yz -> Dw’, with w’≠w, such that
1j1,+ic =

2j2,+ic = ... =
1-i-NjN,c = 0.

The propagation delay along this path has been measured during the application of
Algorithm 2.

The paths Sx->Yz->Dw and Sx->Yz-> Dw’ (these belong to P, hence the propagation
delays along them are already known). Then :

d(ci,j -> Yz -> Dw) = d(Sx->Yz->Dw) + d(ci,j -> Yz -> Dw’) - d(Sx->Yz-> Dw’) n

From Theorems 2 and 3 we conclude that with 2(3log2n + 1) test sessions we have
obtained all the needed information in order to calculate the propagation delays along
all paths in sets P and L.

The first method can also be used to derive the maximum speed of the CUT and
ensures that the circuit will function correctly for lower speeds. We have shown that
the second method can alternatively be used to derive the maximum speed of the
CUT. Since the application of the first method ensures that the circuit functions
correctly for lower speeds and the maximum speed can alternatively be derived
following the second method, we conclude that, when either the first or the second
method is used, it is ensured that the CUT will function correctly for all speeds lower
than the maximum. Therefore, the test set derived following the second method is also
a strong delay-verification test set.

6 Conclusions

We have presented two methods for path delay fault testing of the nxn circuit switched
Omega MIN with centralized control. Following the first and the second method
respectively 2(3n - 2) and 2(3log2n + 1) test sessions are required, while the total
number of logical paths is equal to 2(3n2 - 2n). The application of the first method
requires only verification that the outputs have the correct value one clock period after
the application of the second test vector of each test vector pair. The application of the

280 M. Bellos, D. Nikolos, and H. T. Vergos

second method requires the measurement of the propagation delays along the selected
paths, therefore the application of this method requires a more aggressive tester.
However, for large values of n the number of test vector pairs required by the second
method is significantly smaller than that required by the first method hence the second
method is preferable. We present comparison results in Table 1.

Both methods give strong delay-verification test sets, therefore their application
ensures that if the CUT functions correctly at a speed it will operate also correctly at
all lower speeds.

Table 1. Comparison results.

MIN Number of Number of test sessions Reduction
logical virtual

paths T
method one

T1

method two
T2

T - T

T
1 100%

T - T

T
2 100%

T - T

T
1 2

1

100%

16x16 1472 92 26 93.75 98.23 71.74
32x32 6016 188 32 96.88 99.45 82.98
64x64 24320 380 38 98.44 99.85 90.00

128x128 97792 764 44 99.19 ≈100 94.24
256x256 392192 1532 50 99.6 ≈100 96.74
512x512 1570816 3068 56 99.8 ≈100 98.17

1024x1024 6287360 6140 62 99.9 ≈100 98.99

Table 2. Test vectors and established paths for 8x8 Omega network.

S0S1S2S3S4S5S6S7 c1c2c3 Virtual paths

P T T T T T T TT* 0 0 0 S0-D0, S1-D1, S2-D2, S3-D3, S4-D4, S5-D5, S6-D6, S7-D7

T T T T T T T T 0 0 1 S0-D1, S1-D0, S2-D3, S3-D2, S4-D5, S5-D4, S6-D7, S7-D6

T T T T T T T T 0 1 0 S0-D2, S1-D3, S2-D0, S3-D1, S4-D6, S5-D7, S6-D4, S7-D5

T T T T T T T T 1 0 0 S0-D4, S1-D5, S2-D6, S3-D7, S4-D0, S5-D1, S6-D2, S7-D3

L 0 1 0 1 0 1 0 1 0 0 T c3,1-D0, c3,1-D1, c3,2-D2, c3,2-D3, c3,3-D4, c3,3-D5, c3,4-D6, c3,4-D7

1 0 1 0 1 0 1 0 0 0 T c3,1-D0, c3,1-D1, c3,2-D2, c3,2-D3, c3,3-D4, c3,3-D5, c3,4-D6, c3,4-D7

0 0 1 1 0 0 1 1 0 T 0 c2,1-D0, c2,1-D2, c2,2-D4, c2,2-D6, c2,3-D1, c2,3-D3, c2,4-D5, c2,4-D7

1 1 0 0 1 1 0 0 0 T 0 c2,1-D0, c2,1-D2, c2,2-D4, c2,2-D6, c2,3-D1, c2,3-D3, c2,4-D5, c2,4-D7

0 0 0 0 1 1 1 1 T 0 0 c1,1-D0, c1,1-D4, c1,2-D1, c1,2-D5, c1,3-D2, c1,3-D6, c1,4-D3, c1,4-D7

1 1 1 1 0 0 0 0 T 0 0 c1,1-D0, c1,1-D4, c1,2-D1, c1,2-D5, c1,3-D2, c1,3-D6, c1,4-D3, c1,4-D7

*T denotes a 0->1 and a 1->0 transition.

Although the analysis has been made using the nxn circuit-switched Omega
network with centralized control, it is valid for all isomorphic to the Omega networks
[12], that can be obtained by suitably permuting switching elements and associated
links of the Omega network. As an example in Tables 2 and 3 we give the test vector

Multistage Interconnection Networks 281

pairs, derived from Method two for the 8x8 Omega and Generalized Cube (Figure 8)
networks respectively. The virtual paths that are tested in any case can be different,
hence the paths along which the propagation delays must be calculated from the
measured delays are also different.

0 0

1 1

S0

Source Destination

stage 1 stage 2 stage 3

0 0

1 1

0 0

1 1

0 0

1 1

0 0

1 1

0 0

1 1

0 0

1 1

0 0

1 1

0 0

1 1

0 0

1 1

0 0

1 1

0 0

1 1

c1,1

stage 4stage 0

c1,2

c1,3

c2,2

c2,1 c3,1

c1,4

c3,2

c3,3

c2,4

c2,3

c3,4

S1

S2

S3

S4

S5

S6

S7

D0

D1

D2

D3

D4

D5

D6

D7

Fig. 8. 8x8 Generalized Cube Network

Table 3. Test vectors and established paths for 8x8 Generalized Cube network.

S0S1S2S3S4S5S6S7 c1c2c3 Virtual paths

P T T T T T T T T 0 0 0 S0-D0, S1-D1, S2-D2, S3-D3, S4-D4, S5-D5, S6-D6, S7-D7

T T T T T T T T 0 0 1 S0-D1, S1-D0, S2-D3, S3-D2, S4-D5, S5-D4, S6-D7, S7-D6

T T T T T T T T 0 1 0 S0-D2, S1-D3, S2-D0, S3-D1, S4-D6, S5-D7, S6-D4, S7-D5

T T T T T T T T 1 0 0 S0-D4, S1-D5, S2-D6, S3-D7, S4-D0, S5-D1, S6-D2, S7-D3

L 0 1 0 1 0 1 0 1 0 0 T c3,1-D0, c3,1-D1, c3,2-D2, c3,2-D3, c3,3-D4, c3,3-D5, c3,4-D6, c3,4-D7

1 0 1 0 1 0 1 0 0 0 T c3,1-D0, c3,1-D1, c3,2-D2, c3,2-D3, c3,3-D4, c3,3-D5, c3,4-D6, c3,4-D7

0 0 1 1 0 0 1 1 0 T 0 c2,1-D0, c2,1-D2, c2,2-D1, c2,2-D3, c2,3-D4, c2,3-D6, c2,4-D5, c2,4-D7

1 1 0 0 1 1 0 0 0 T 0 c2,1-D0, c2,1-D2, c2,2-D1, c2,2-D3, c2,3-D4, c2,3-D6, c2,4-D5, c2,4-D7

0 0 0 0 1 1 1 1 T 0 0 c1,1-D0, c1,1-D4, c1,2-D1, c1,2-D5, c1,3-D2, c1,3-D6, c1,4-D3, c1,4-D7

1 1 1 1 0 0 0 0 T 0 0 c1,1-D0, c1,1-D4, c1,2-D1, c1,2-D5, c1,3-D2, c1,3-D6, c1,4-D3, c1,4-D7

The application of the proposed methods to a wider class of MINs (for example
Delta and Banyan MINs) as well as their extension for path delay fault diagnosis are
under investigation.

282 M. Bellos, D. Nikolos, and H. T. Vergos

References

1. H. J. Siegel, Interconnection Networks for Large-Scale Parallel Processing, 2nd ed., New
York: McGraw-Hill, 1990.

2. T. Feng, "A survey of Interconnection Networks", Computer, pp. 12–27, December 1981.
3. D. P. Agrawal, "Testing and Fault Tolerance of Multistage Interconnection Networks",

Computer, pp. 41 – 53, April 1982.
4. V. P. Kumar and S. M. Reddy, "Augmented shuffle-exchange multistage interconnection

networks", Computer, pp. 30 – 40, June 1987.
5. Z. Brasilai and B. Rosen, "Comparison of ac self-testing procedures", Proc. of ITC-83, pp.

560-571.
6. K. D. Wagner, "The error latency of delay faults in combinational and sequential circuits",

Proc. of ITC-85, pp. 334 - 341.
7. G. L. Smith, "Model for delay faults based upon paths", Proc. of ITC-85, pp. 342 - 349.
8. J. D. Lesser and J. J. Shedletsky, "An Experimental Delay Test Generator for LSI Logic",

IEEE Trans. on Computers, vol. C-29 (3), pp. 235 – 248, March 1980.
9. W. K. Lam, et al., "Delay fault coverage, test set size and performance trade-offs", IEEE

Trans. on CAD, vol. 14 (1), pp. 32 - 44, Jan. 1995.
10. S. Tani, et al., "Efficient Path Selection for Delay Testing Based on Partial Path

Evaluation", Proc. of 16th IEEE VLSI Test Symposium, pp. 188 - 193, 1998.
11. T. Haniotakis, Y. Tsiatouhas and D. Nikolos, "C-Testable One-Dimensional ILAs with

Respect to Path Delay Faults : Theory and Applications", 1998 IEEE Int. Symposium on
Defect and Fault Tolerance in VLSI Systems, pp. 155 - 163.

12. C. Wu and T. Feng, "On a Class of Multistage Interconnection Networks", IEEE
Transactions on Computers, vol. C-29 (8), pp. 694 – 702, August 1980.

13. M. A. Franklin, D.F. Wann and W.J. Thomas, "Pin Limitations and partitioning of VLSI
Interconnection Networks", IEEE Trans. on Computers, vol. C-31, pp. 1109 – 1116,
November 1982.

14. C. J. Lin and S. M. Reddy, "On Delay Fault Testing in Logic Circuits", IEEE Trans. on
CAD, pp. 694 – 703, September 1987.

15. K. Pramanick and S. M. Reddy, "On the Design of Path Delay Fault Testable
Combinational Circuits", Proc. of Fault Tolerant Computing, pp. 374 – 381, 1990.

16. J. Lin, S. M. Reddy and S. Patil, "An Automatic Test Pattern Generator for the Detection
of Path Delay Faults", Proc. of Int'l Conf. on CAD, pp. 284 – 287, 1987.

17. W. Ke and P. R. Menon, "Synthesis of Delay – Verifiable Combinational Circuits", IEEE
Trans. on Computers, pp. 213 – 222, Feb. 1995.

18. H. S. Stone, "Parallel Processing with the perfect shuffle", IEEE Trans. on Computers,
vol.C-20, pp. 153 - 161, 1971.

	B3_out
	balnk
	B3
	Path Delay Fault Testing of a Class of Circuit-Switched Multistage Interconnection Networks
	Introduction
	Preliminaries
	Omega Networks
	Method One: Parallel Testing
	Method Two : Path Selection Based Method
	Set P
	Set L

	Conclusions
	References

